Project Appraisal Guidelines for National Roads Unit 11 - Financial Appraisal

PE-PAG-02044
March 2021
About TII
Transport Infrastructure Ireland (TII) is responsible for managing and improving the country’s national road and light rail networks.

About TII Publications
TII maintains an online suite of technical publications, which is managed through the TII Publications website. The contents of TII Publications is clearly split into ‘Standards’ and ‘Technical’ documentation. All documentation for implementation on TII schemes is collectively referred to as TII Publications (Standards), and all other documentation within the system is collectively referred to as TII Publications (Technical).

Document Attributes
Each document within TII Publications has a range of attributes associated with it, which allows for efficient access and retrieval of the document from the website. These attributes are also contained on the inside cover of each current document, for reference.

<table>
<thead>
<tr>
<th>TII Publication Title</th>
<th>Project Appraisal Guidelines for National Roads Unit 11 - Financial Appraisal</th>
</tr>
</thead>
<tbody>
<tr>
<td>TII Publication Number</td>
<td>PE-PAG-02044</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Activity</th>
<th>Planning & Evaluation (PE)</th>
<th>Document Set</th>
<th>Technical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stream</td>
<td>Project Appraisal Guidelines (PAG)</td>
<td>Publication Date</td>
<td>March 2021</td>
</tr>
<tr>
<td>Document Number</td>
<td>02044</td>
<td>Historical Reference</td>
<td>PAG Unit 11</td>
</tr>
</tbody>
</table>

TII Publications Website
This document is part of the TII publications system all of which is available free of charge at http://www.tiipublications.ie. For more information on the TII Publications system or to access further TII Publications documentation, please refer to the TII Publications website.

TII Authorisation and Contact Details
This document has been authorised by the Director of Professional Services, Transport Infrastructure Ireland. For any further guidance on the TII Publications system, please contact the following:

Contact: Standards and Research Section, Transport Infrastructure Ireland
Postal Address: Parkgate Business Centre, Parkgate Street, Dublin 8, D08 DK10
Telephone: +353 1 646 3600
Email: infoPUBS@tii.ie
TII Publications

Activity: Planning & Evaluation (PE)
Stream: Project Appraisal Guidelines (PAG)
TII Publication Title: Project Appraisal Guidelines for National Roads Unit 11 - Financial Appraisal
TII Publication Number: PE-PAG-02044
Publication Date: March 2021
Set: Technical

Contents Table

1. Context..1
3. General Financial Analysis ...3
4. Exchequer Cash Flow Analysis ..10
5. Source of Funding Analysis ...12
6. Reporting ...13

Appendix A: ..14
Excise Duty and Carbon Charge ...14

Appendix B: ..17
VAT...17
Updates to TII Publications resulting in changes to
Project Appraisal Guidelines for National Roads Unit 11 - Financial Appraisal PE-PAG-02044

Date: March 2021
Page No:
Section No:
Amendment Details:

Update to bring into compliance with the Public Spending Code (December 2019).
Contents Table

1. Context.. 1
3. General Financial Analysis.. 3
4. Exchequer Cash Flow Analysis .. 10
5. Source of Funding Analysis... 12
6. Reporting ... 13

Appendix A:.. 14
Excise Duty and Carbon Charge .. 14

Appendix B:.. 17
VAT... 17
1. Context

‘Financial Appraisal’ (FA) is the term used to describe the financial viability of a project. Traditionally FA has been used in the private sector more frequently than the public sector. However, FA has now been identified as an essential component of detailed public sector appraisal. The Public Spending Code (PSC) now states that FA should be carried out in advance of an ‘Economic Appraisal’ (EA) in order to clearly establish the financial cost of a project.

FA is an essential tool for policy makers in terms of:

- Evaluating the cash flows that result from implementation; and
- Understanding the ongoing financial burden of a project over and above the initial capital costs.

Financial appraisal is considered mandatory in the preparation of all Business Cases for transport projects, regardless of scale. The scale of FA is proportionate to the scale of the project. Guidance on the scale of the appraisal is provided in this PAG Unit.

This PAG Unit has been developed with reference to the Guidelines on a Common Appraisal Framework for Transport Projects and Programmes\(^1\), and by extension, the Public Spending Code\(^2\), which outline the approach to the preparation of Business Cases for transport projects.

\(^1\) Guidelines on a Common Appraisal Framework for Transport Projects and Programmes (Department of Transport, Tourism and Sport, 2020)
\(^2\) Public Spending Code (Department of Public Expenditure and Reform, 2019)
2. **Principles of Financial Appraisal**

Core to the public sector appraisal process is the concept of ‘opportunity cost’; meaning that the demand for public sector intervention exceeds the available resources, and that choices must be made regarding the use of limited public funds. In order to ensure the optimal use of these public funds, the principles of ‘effectiveness’ and ‘efficiency’ are enshrined into the public appraisal process by the Public Spending Code.

The question of ‘Effectiveness’ refers whether a project is the ‘right’ one from a public perspective in terms of achieving certain economic, social or environmental outcomes, and is primarily addressed by the economic appraisal which examines the wider economic costs and benefits of a project or programme. Financial Appraisal (FA) is mainly concerned with the ‘efficiency’ of the proposal; ensuring that it is carried out in a way that optimises the use of public funds and resources.

The focus of FA is to evaluate the financial viability of a project from the perspective of the sponsoring agency and the exchequer. While FA is often used in the private sector to assess the commercial viability and performance of an investment, the purpose of public investment is generally not to make a profit, and in practice, many of the outputs of the FA will be negative for public investment projects.

However, a robust FA is necessary to quantify the inflows and outflows associated with a project, to identify the funding that will be required, and ultimately, to ensure that it is affordable for the sponsoring agency and the Government.

Three types of financial appraisal are required under the Public Spending Code and Common Appraisal Framework in the appraisal of publicly-funded projects:

- **General Financial Analysis**, which quantifies the financial cash inflows and outflows from the perspective of the sponsoring agency. The General Financial Analysis is required for all projects, regardless of size.

- **Exchequer Cash Flow Analysis**, which quantifies the financial cash flows from the perspective of the exchequer. This takes into account the central funding provided to a project by the exchequer, as well as the indirect inflows and outflows such as taxation and duties. The Exchequer Cash Flow is also required in all instances.

- **Sources of Funding Analysis** (also known as an ‘Affordability’ Analysis), which establishes the amount of funding that will be required for a project, as well as the anticipated sources of that funding. This is also required for all projects.

In the Public Spending Code, Financial Appraisal is first required at the ‘Preliminary Business Case’ stage of the appraisal process, which corresponds to Phase 3 (Design & Environmental Evaluation) of the TII Project Management Guidelines (PMG) project phases. Following the selection of a Preferred Option, the Preliminary Business Case will continue to be revised as the project moves through each subsequent stage of the appraisal process and as more information regarding the project is gained. As this happens, the FA for the Preferred Option should also continue to be updated to incorporate the most up-to-date information, costs, and programme.
3. General Financial Analysis

As previously stated, a General Financial Analysis (GFA) is mandatory for all business cases. The process of creating a GFA is relatively straightforward, and can be summarised in seven stages:

- **Stage 1**: Identify the project time horizon;
- **Stage 2**: Identify cash inflows and outflows;
- **Stage 3**: Quantify the cash inflows and outflows;
- **Stage 4**: Adjust the pattern of cash flows;
- **Stage 5**: Calculate the key indicators;
- **Stage 6**: Sensitivity analysis; and
- **Stage 7**: Reporting.

An illustrative example of GFA is presented in Table 11.1 of this PAG Unit.

Stage 1: When carrying out an appraisal, it is important to consider the duration of the appraisal period or appraisal time horizon; the period over which costs and benefits will be measured. According to the PSC, the length of the appraisal period should match the useful economic life of the asset in order to fully take into account its whole-life cost. The appraisal period for the financial appraisal of large road and light rail schemes is generally assumed to be sixty years, plus the time it takes to deliver the project³.

Stage 2: Once a time horizon is selected, it is necessary to identify the cash inflows and outflows that arise as a result of the project. In the GFA, inflows and outflows are from the perspective of the sponsoring agency, and examples are shown in Table 11.1 below. When identifying inflows and outflows, be sure to separate the base costs/revenue from inflation and taxation (such as Value-Added Tax).

The level of detail provided for in financial analysis should be proportional to the project stage and the scale of spending anticipated. To assist in the preparation of the financial analysis, Table 11.1 on the following page identifies and describes some of the standard inflows and outflow included in a cash flow analysis.

³ The time horizon of the FA should be generally consistent with that of the economic appraisal, even if the actual appraisal period differs between the two. For example, the economic appraisal might use an appraisal period of 30 years, plus an additional 30 years of residual value to maintain consistency with the 60-year appraisal period of the FA.
Table 11.1 General Financial Analysis Example Inflows and Outflows

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inflows</td>
<td></td>
</tr>
<tr>
<td>Operating Revenues</td>
<td>Cash flows from the users of the good or service provided by the operation. For a road, this may comprise any tolls (if applicable), or fare revenue for a light rail project. Transfers and subsidies are not included as revenues, nor financial income (e.g. interest rates on deposits).</td>
</tr>
<tr>
<td>Residual Value/Revenue</td>
<td>If any of the assets in the project are expected to still have a market value or generate revenue after the end of the appraisal period, this should be treated as a cash inflow (e.g. the revenue from the sale of land used for a Motorway Service Area). However in most cases, if the length of the appraisal period reflects the useful life of the asset, there should be no residual value/revenue. It is also important to note that the concept of residual value in the financial appraisal differs from that in the economic appraisal, as the financial appraisal only considers potential financial/monetary flows that could occur after the appraisal period.</td>
</tr>
<tr>
<td>Outflows</td>
<td></td>
</tr>
<tr>
<td>Capital Costs</td>
<td>Must include the capital costs of all fixed assets (e.g. land acquisition costs, construction cost of pavement and structures, ITS equipment). In addition to non-fixed assets (e.g. start-up and technical costs such as design, planning, project management, technical assistance, construction supervision, publicity etc.).</td>
</tr>
<tr>
<td>Replacement/Renewal Costs</td>
<td>Include reoccurring costs during the reference period to replace short-life assets and/or equipment (e.g. pavement renewal, engineering plant, IT equipment, office furniture and vehicles).</td>
</tr>
<tr>
<td>Operating & Maintenance Costs</td>
<td>Costs to operate and maintain the new or upgraded service. Cost forecasts may be based upon historical unit costs where expenditure ensures adequate quality standards. This includes winter operations, routine maintenance, and other recurring costs over the appraisal period. Financing costs should not be included.</td>
</tr>
<tr>
<td>Decommissioning Costs</td>
<td>This is the cost of removing an asset from use at the end of its economic life. This often applies to items which are undesirable at the end of their economic life, such as materials for which specialist disposal or recycling is required.</td>
</tr>
</tbody>
</table>

In addition to the cash inflows and outflows highlighted on the previous page, a number of items explicitly should not be included, these are:

- **Depreciation** – Depreciation is primarily an accounting technique used to allocate capital costs and does not represent a physical cash flow for the purposes of the GFA;
- **Cash Reserves** - Such as sinking funds; and
- **Sunk Costs** – Sunk costs refer to costs that have already been incurred at the time of carrying out the appraisal and that cannot be recovered.
Unless these are recoverable (e.g. reselling a plot of land that had previously been purchased), these should be excluded from the General Financial Analysis as they are not affected by any subsequent decision to proceed with the project. However, it is still prudent to note in the FA where costs have been incurred in the past.

Stage 3: Once the cash inflows have been identified, it is necessary to quantify the inflows and outflows. This process may require the input of accountants, economists, engineers, quantity surveyors and other specialists, and should be based upon the most accurate available data. Cashflows for each option should also be reported ‘incrementally’, which means that they are based on the difference between the Do-Something and Do-Nothing/Do-Minimum scenarios. For example, if the cost of replacing an asset (Do-Something) was €10 million while the alternative cost of maintaining an existing asset (Do Minimum) was €1 million, then the incremental cost of that option would be €9 million.

Stage 4: It is necessary to estimate the flow of funding over the course of a project’s useful economic life. When forecasting future flows, inflation is generally excluded from both inflows and outflows, which are instead reported in ‘constant prices’ linked to a common base year. The main exception to this is ‘excess inflation’ (sometimes also referred to as ‘escalation’), which refers to inflation in specific cost categories that runs over and above the general rate of inflation in the economy. The European Central Bank targets a long-run rate of inflation of around 2% per year, which is usually used in the appraisal as the general rate of inflation in the economy. However, if construction costs (for example) were expected to increase by 6% per year, this is above the general rate of inflation and amounts to excess inflation of 4% per year. While costs and revenue should usually be assumed to increase in line with the general rate of inflation, if there is strong evidence that certain costs/revenue are likely to diverge from the general rate of inflation, it will be necessary to account for this excess inflation.

For each year \(t \) of the appraisal period, the correct future value can be calculated by adjusting the base value by the formula below:

\[
\text{Future Value}_t = \text{Base Value} \times (1 + \text{Excess Inflation})^t
\]

After calculating the future value of all inflows and outflows each year, it is then necessary to calculate the ‘present value’ of these flows by way of discounting. The discount rate for appraisal is set by the PSC, which currently stipulates a discount value of 4% for future costs and revenue for the first 30 years of the appraisal period, and a rate of 3.5% in the years 31-60\(^4\). The only exception to this PSC rate is for Design, Build & Operate PPP projects, where a discount rate of 2.28% is set by the National Development Finance Agency to be applied to future cash flows\(^5\). In order to estimate the present value of future cash flows, the relevant discount rate is applied in each year \(t \) using the following formula:

\[
\text{Present Value} = \text{Sum Total} \left(\frac{\text{Future Value}_t}{(1 + \text{Discount Rate})^t} \right)
\]

Stage 5: Three key indicators are used to assess the outcome of cash flow analysis:

- Net Revenues;
- Financial Net Present Value; and
- Financial Rate of Return\(^6\).

\(^4\) Department of Public Expenditure and Reform, 2019. ‘PSC Central Technical References and Economic Appraisal Parameters Circular’.

\(^5\) Department of Public Expenditure and Reform, 2021. ‘Project Evaluation/Appraisal: Applicable Rates’. Available at: https://www.gov.ie/en/policy-information/1a0dcb-project-discount-inflation-rates/

\(^6\) This may not be possible to calculate for projects where the net cash flows are all-negative or all-positive for each year in the appraisal period.
Net Revenues show if the project is capable of sustaining itself after initial investment or if supplementary funding is required in order to supplement the project's continuing operation. A note should be made of any periods which incur a loss.

Net Revenues = Operating Revenues – Operating Costs – Replacement Costs

Financial Net Present Value (FNPV) is used to estimate the ability of a project to cover operation costs and achieve a return on investment over the project’s useful economic life in present values. FNPVs typically produce a negative financial return in public sector appraisal, and should not be considered grounds for rejection. However, identifying additional sources of revenue, or cost/design based saving measures will improve the possibility of a project being accommodated within the exchequer budget. FNPV may be calculated by totalling:

\[\text{FNPV} = \text{Discounted Sum Total (Net Revenues – Investment Costs – Decommissioning costs + Residual Value)} \]

Financial Rate of Return (FRR) is the discount rate at which the nominal (non-discounted) value of all financial cash flows would be rendered equal to zero. This is used to estimate the financial attractiveness of a project. This interest rate should be compared to the financial discount rate of 4%. The FRR can be calculated in excel by applying the IRR formula to the annual nominal value. This is calculated as:

\[0 = \text{Sum Total (nominal value) / (1 + Financial Rate of Return)}^\text{time} \]

However, it should be noted that it is not possible to calculate the FRR on all-positive or all-negative cash flows (i.e. if the net cash flows are negative for every year in the appraisal period). This is relatively common in public sector projects, and the FRR may not be applicable to every project.

Stage 6: Sensitivity analysis is required with all economic and financial analysis. The purpose of this is to determine variables which give rise to risk. The CAF identifies that sensitivity rates must, at minimum, be applied to transport demand and project costing, including any calculations based upon these assumptions. It is recommended that a sensitivity of 20% and 10% is applied in all cases. A table should be included in the business case outlining the NR, FNPV and FRR in each option according to the sensitivity. Examples of recommended sensitivity tests are shown in Table 11.2 below.

Table 11.2 Recommended Sensitivity Tests

<table>
<thead>
<tr>
<th>Financial Appraisal Sensitivity Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scenario</td>
</tr>
<tr>
<td>Costing: for the Target Cost and Total Scheme Budget.</td>
</tr>
<tr>
<td>Demand: To account for revenue raising measures such as tolls</td>
</tr>
<tr>
<td>Test</td>
</tr>
<tr>
<td>Total Scheme Budgets (TSB) and Target Costs (TC) are produced as part of the EA at Phase 3 and 5. See PAG Unit 6.2 – Preparation of Scheme Costs for further detail.</td>
</tr>
<tr>
<td>Specific County/Metropolitan Area traffic growth sensitivities are provided in PAG Unit 5.3 – Travel Demand Projections. Should be applied to use based calculations e.g. tolling.</td>
</tr>
</tbody>
</table>

In addition to sensitivity analysis, switching values should be assessed. A switching value is the percentage change required by a variable to render the FNPV to 0. This should be applied to the same set of variables as the sensitivity analysis. The switching value may be obtained using the following formula. If no revenues are observed, a simple statement explaining this will suffice.
Switching Value = (FNPV – Variable)/Variable

Stage 7: The results of the General Financial Analysis should be included in the financial appraisal section of the report. An example of a GFA table is shown in Table 11.3 below.
Table 11.3 Example of General Financial Analysis

<table>
<thead>
<tr>
<th>Description/Years (t)</th>
<th>Total (€ Thousand)</th>
<th>Construction Phase</th>
<th>Operational Life</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>a Tolling Revenue</td>
<td>60,000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>b Residual (e.g. from the sale of land)</td>
<td>20,000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>c Total Inflows (a+b)</td>
<td>80,000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>d Main Construction Contract</td>
<td>30,000</td>
<td>15,000</td>
<td>15,000</td>
</tr>
<tr>
<td>e Main Supervision Contract</td>
<td>6,000</td>
<td>3,000</td>
<td>3,000</td>
</tr>
<tr>
<td>f Archaeology</td>
<td>100</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>g Advance Works and Other Contracts</td>
<td>300</td>
<td>300</td>
<td>0</td>
</tr>
<tr>
<td>h Land and Property</td>
<td>3,000</td>
<td>3,000</td>
<td>0</td>
</tr>
<tr>
<td>i Planning and Design</td>
<td>500</td>
<td>500</td>
<td>0</td>
</tr>
<tr>
<td>j Initial Construction Outflows (d:i)</td>
<td>39,900</td>
<td>21,900</td>
<td>18,000</td>
</tr>
<tr>
<td>k Ongoing Maintenance Costs</td>
<td>9,150</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>l Labour Costs</td>
<td>3,050</td>
<td>0</td>
<td>50</td>
</tr>
<tr>
<td>m Ongoing Operational Outflows (k+l)</td>
<td>12,200</td>
<td>0</td>
<td>200</td>
</tr>
<tr>
<td>n Total Outflows (j+m)</td>
<td>52,100</td>
<td>21,900</td>
<td>18,200</td>
</tr>
<tr>
<td>o Operational Revenue (c-m)</td>
<td>67,800</td>
<td>0</td>
<td>-200</td>
</tr>
<tr>
<td>p Nominal Cash Flow (c-n)</td>
<td>27,900</td>
<td>-21,900</td>
<td>-18,200</td>
</tr>
</tbody>
</table>

7 Numbers presented here are completely fictional and purely for illustration purposes.
Example General Financial Analysis

<table>
<thead>
<tr>
<th>Description/Years (t)</th>
<th>Total (€ Thousand)</th>
<th>Construction Phase</th>
<th>Operational Life</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>q FNPV (p/s)</td>
<td>-6,604</td>
<td>-21,058</td>
<td>-16,827</td>
</tr>
<tr>
<td>r FRR (IRR(p))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s Discount Factor (1+4%)^t</td>
<td>N/A</td>
<td>1.04</td>
<td>1.08</td>
</tr>
</tbody>
</table>
4. Exchequer Cash Flow Analysis

Exchequer Cash Flow Analysis is a mandatory appraisal requirement for all projects in excess of €20 million or which incur capital expenditure in excess of €5 million per annum. Exchequer Cash Flow Analysis identifies and quantifies the direct flows which impact upon the exchequer budget.

The process of creating an Exchequer Cash Flow Analysis is similar to the process for carrying out the project cash flow analysis; except in this instance, cash flows are examined from the perspective of the Government. Again, this process may be summarised as a seven stage process. These stages may be summarised as:

- **Stage 1**: Identify the project time horizon;
- **Stage 2**: Identify cash inflows and outflows;
- **Stage 3**: Quantify the cash inflows and outflows;
- **Stage 4**: Adjust the pattern of cash flows;
- **Stage 5**: Calculate the key indicators;
- **Stage 6**: Sensitivity analysis; and
- **Stage 7**: Reporting.

For general instruction on how to complete the Exchequer Cash Flow Analysis please see the previous instruction on the project cash flow analysis. The Exchequer Cash Flow Analysis builds on the Financial Net Present Value, with minor adjustments to include additional direct and indirect inflows and outflows associated with the project which solely impact the exchequer. These inflows and outflows are identified in the following paragraphs.

In addition to the outflows and inflows identified in the Project Cash Flow Analysis, dividends and tax impacts may also be included. Dividends are primarily composed of tax impacts, but may also include other flows. An adjusted table detailing these inflows and outflows are identified on the following page.

Tax impacts can be subdivided into Indirect Taxes (VRT, Fuel Excise8, Carbon Charge9, VAT10, Customs and Excise) and Direct Taxes (Income and Corporation Tax). In both cases only additional taxes which are directly attributable to the project should be included. Positive tax impacts should be identified as additional inflows. These are illustrated overleaf in Table 11.4. This table should be considered supplementary to Table 11.1 which details examples of inflows and outflows for General Financial Analysis.

8 See Appendix 1 for calculation method.
9 See Appendix 1 for calculation method.
10 See Appendix 3 for calculation method.
Table 11.4 Examples of Financial Inflows and Outflows for Exchequer Cash Flow Analysis (additional to General Financial Analysis Inflows and Outflows)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inflows</td>
<td>Direct dividends are considered operating revenues e.g. tolling. Indirect dividends also increase as a result of the project going ahead. Examples of indirect dividends include:</td>
</tr>
<tr>
<td></td>
<td>• VAT(^{11});</td>
</tr>
<tr>
<td></td>
<td>• Excise Duty(^{12});</td>
</tr>
<tr>
<td></td>
<td>• Carbon Tax(^{13});</td>
</tr>
<tr>
<td></td>
<td>• Corporation Tax;</td>
</tr>
<tr>
<td></td>
<td>• Income Tax;</td>
</tr>
<tr>
<td></td>
<td>• VRT; and</td>
</tr>
<tr>
<td></td>
<td>• Avoided Unemployment Costs (social welfare benefit).</td>
</tr>
<tr>
<td></td>
<td>Inclusions must be net of deadweight and must only include what would not have been received in the absence of the project.</td>
</tr>
<tr>
<td>Outflows</td>
<td>N/A</td>
</tr>
<tr>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

In addition to Tax impacts, other flows should be included. Examples of miscellaneous flows which may impact the exchequer may include Shadow Tolling and PPP Availability Payments, EU finance passing through the exchequer (co-funding) and fines. These may be classified as inflows or outflows accordingly depending on the flow of funds to/from the exchequer.

\(^{11}\) If VAT was not included in costs paid in the GFA (as was stipulated previously), it should not be subsequently included as an inflow in the Exchequer Cash Flow. However, VAT and taxation on private expenditure would represent a net inflow for the government, and should be included.

\(^{12}\) See Appendix 1

\(^{13}\) See Appendix 1
A Source of Funding Analysis confirms the role played by participants in the funding process. In most cases the funding is singularly provided by the sanctioning authority. In this case it is unnecessary to carry out a source of funding analysis. As Advised by PAG Unit 6.1 and the CAF, advice in relation to funding should be sought from the National Development Financing Agency for all projects exceeding €20 million.

However, if funds are sought from more than one source for a project, the analysis should be carried out.

A Source of Funding Analysis is a straight-forward four-stage process. This process can be summarised as:

- **Stage 1**: Identify the project time horizon;
- **Stage 2**: Identify providers of funding;
- **Stage 3**: Quantify the flows of funding; and
- **Stage 4**: Confirm funding needs.

Stage 1: The length of the appraisal period should match the useable economic life of the project. This should match the time horizon adopted for the Cash Flow Analysis.

Stage 2: Now that a time horizon is selected, it is necessary to identify the providers of finance. Common providers of finance include: EU financing, Exchequer contribution, private capital, EIB funding and other loans.

Stage 3: Quantify the flow of funding annually by provider. Tally the total flow of funding. Unlike the previous types of financial appraisal, the Source of Funding Analysis is done in ‘nominal’ terms, meaning that it is necessary to include VAT and inflation in the calculations to ensure that the funding required is not underestimated. Similarly, these flows should not be discounted.

Stage 4: Confirm that the flow and timing of funding is sufficient to meet the investment costs. If this is not the case, take corrective action. An example of the Sources of Funding Analysis is presented in Table 11.5.

<table>
<thead>
<tr>
<th>Table 11.5 Sources of Funding Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year 0</td>
</tr>
<tr>
<td>Calculation of Total Funding</td>
</tr>
<tr>
<td>EU finance passing through the Exchequer</td>
</tr>
<tr>
<td>Exchequer contribution</td>
</tr>
<tr>
<td>EIB financing</td>
</tr>
<tr>
<td>Other</td>
</tr>
<tr>
<td>Total Funding</td>
</tr>
</tbody>
</table>

Notes:
- [a]: Scheme Detail
- [b]: Scheme Detail
- [c]: Scheme Detail
- [d]: Scheme Detail
- [e]: a + b + c + d
6. Reporting

The results of all elements of the Financial Appraisal shall be presented in the relevant Section of the Business Case (refer to Business Case template in PAG Unit 8.0 PE-PAG-02033) along with commentary on the results. It additional the financial appraisal section should include references to the derivation/ sources of all costs and revenues used in the analysis.
Appendix A:
Excise Duty and Carbon Charge
The proposed methodology to calculate Excise Duty is carried out in this Appendix. This is only required for the manual calculation of Excise Duty, which is included in the financial appraisal. Both Excise Duty and the Carbon Charge are calculated automatically in TUBA.

The excise benefit / cost of any road project is measured as the sum of the change in fuel consumption multiplied by the excise duty. This is represented by the equation:

$$ EB = (\Delta FC_P \times ED_P) + (\Delta FC_D \times ED_D) $$

Where:

- EB is the Excise Benefit
- ΔFC is the change in fuel consumption (See Box1)
- ED is the excise duty
- \(P\) denotes petrol
- \(D\) denotes Diesel

The change in fuel consumption calculation is presented on the next page in Box 1. Excise duties for petrol and diesel are obtained from the Revenue website under mineral oil taxes. Petrol is classed as ‘light oil’. Diesel is classified as ‘Heavy Oil’. Component A identifies the excise charge. Component B denotes the carbon charge element. While these can be calculated together, it is recommended that these are represented separately in the appraisal.
Box 1: Change in Fuel Consumption

In order to calculate a range of fuel related excises, it is necessary to estimate the change in fuel consumption. Instruction here allows for the manual calculation of the change in fuel consumption (appraisal tool such as TUBA will automatically account for the change in Fuel consumption). Separate calculations are required for diesel and petrol based consumption as excise differs between these fuel propellants. As fuel consumption also varies by vehicle type it is necessary to also account for this in the following formula:

$$\Delta FC = \Delta FC_{v1} + \Delta FC_{v2} + \Delta FC_{v3} \ldots$$

Where:
- ΔFC is the change in fuel consumption
- Vt is the vehicle type

Change in fuel consumption is estimated for each vehicle type by the following formula:

$$\Delta FC_{vt} = n_v (\Delta DT \times CP_v)$$

Where:
- ΔFC is the change in fuel consumption
- vt is the vehicle type
- n is the number of vehicles
- ΔDT is the average change in distance travelled
- CP is the fuel consumption parameter

The change in fuel consumption calculation presented above is a distance based calculation, the output of which is presented in litres. The calculation must be made for each vehicle type. The number of vehicles and change in distance travelled can be obtained from the transport model. The consumption parameters are located in PAG Unit 6.11 (Table 6.9 and Table 6.15). This parameter is presented in Litres per 100km. All vehicles are presumed to use diesel propellant aside from petrol car.
Appendix B:

VAT
The proposed methodology to calculate additional VAT dividend is carried out in this Appendix. This is only required for the calculation of VAT, which is included in the financial appraisal.

The additional VAT benefit / cost of any project is measured as the sum of the change in fuel consumption multiplied by the market price of fuel and diesel. This is represented by the equation:

$$\Delta \text{VATB} = \Delta \text{FC}_n \times \text{MP}_n \times \text{VATR}$$

Where:

ΔVATB is the change in VAT benefit

ΔFC is the change in consumption of the fuel type

MP is the market price of the respective fuel

VATR is the VAT Rate

ft represents the fuel type

ΔFC calculation is demonstrated in Appendix 1. The calculation of Petrol VAT is a straightforward calculation using the above. The VAT rate applied to fuel is the standard rate, and is charged on top of all other taxes including excise duty.