Network Safety Analysis Procedures

GE-STY-01036
December 2017
About TII

Transport Infrastructure Ireland (TII) is responsible for managing and improving the country’s national road and light rail networks.

About TII Publications

TII maintains an online suite of technical publications, which is managed through the TII Publications website. The contents of TII Publications is clearly split into ‘Standards’ and ‘Technical’ documentation. All documentation for implementation on TII schemes is collectively referred to as TII Publications (Standards), and all other documentation within the system is collectively referred to as TII Publications (Technical).

Document Attributes

Each document within TII Publications has a range of attributes associated with it, which allows for efficient access and retrieval of the document from the website. These attributes are also contained on the inside cover of each current document, for reference.

<table>
<thead>
<tr>
<th>TII Publication Title</th>
<th>Network Safety Analysis Procedures</th>
</tr>
</thead>
<tbody>
<tr>
<td>TII Publication Number</td>
<td>GE-STY-01036</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Activity</th>
<th>General (GE)</th>
<th>Document Set</th>
<th>Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stream</td>
<td>Safety (STY)</td>
<td>Publication Date</td>
<td>December 2017</td>
</tr>
<tr>
<td>Document Number</td>
<td>01036</td>
<td>Historical Reference</td>
<td>N/A</td>
</tr>
</tbody>
</table>

TII Publications Website

This document is part of the TII publications system all of which is available free of charge at http://www.tiipublications.ie. For more information on the TII Publications system or to access further TII Publications documentation, please refer to the TII Publications website.

TII Authorisation and Contact Details

This document has been authorised by the Director of Professional Services, Transport Infrastructure Ireland. For any further guidance on the TII Publications system, please contact the following:

Contact: Standards and Research Section, Transport Infrastructure Ireland
Postal Address: Parkgate Business Centre, Parkgate Street, Dublin 8, D08 DK10
Telephone: +353 1 646 3600
Email: infoPUBS@tii.ie
Contents

1. Introduction ... 1
2. Network Safety Analysis... 2
3. References.. 6

Appendix A: ... 7
Network Safety Analysis Scheme Development Flowchart .. 7

Appendix B: ... 9
Likely Severity Outcome of all Primary Collision Types ... 9

Appendix C: ... 11
Macro View – Spatial Distribution of Fatal Collisions ... 11
Updates to TII Publications resulting in changes to Network Safety Analysis Procedures GE-STY-01036

<table>
<thead>
<tr>
<th>Date:</th>
<th>April 2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Page No:</td>
<td>8</td>
</tr>
<tr>
<td>Section No:</td>
<td>Appendix A</td>
</tr>
</tbody>
</table>

Amendment Details:

The following minor amendment has been incorporated into the December 2017 version of this Standard:

a) Minor updates have been made to the text within the Network Safety Analysis Scheme Development Flowchart within Appendix A for clarity.
Contents Table

1. **Introduction** .. 1
 1.1 Scope .. 1

2. **Network Safety Analysis** .. 2
 2.1 High Collision Location (HCL) Identification Analysis ... 2
 2.2 Supplementary Data Outputs .. 5

3. **References** .. 6
 3.1 TII Publications (Standards) ... 6
 3.2 Other documents .. 6

Appendix A: .. 7
 Network Safety Analysis Scheme Development Flowchart .. 7

Appendix B: .. 9
 Likely Severity Outcome of all Primary Collision Types .. 9

Appendix C: .. 11
 Macro View – Spatial Distribution of Fatal Collisions ... 11
1. **Introduction**

1.1 **Scope**

The purpose of this document is to further explain the processes used to implement Network Safety Analysis on the national road network. The relevant stages undertaken throughout the analysis are set out in this document.

These procedures should be read in conjunction with GE-STY-01022 Network Safety Analysis, EU Directive on Road Safety Infrastructure Management 2008/96/EC and SI 472 of 2011.
2. **Network Safety Analysis**

The identification of High Collision Locations (HCL) is a multi-stage process. It follows the steps listed below:

- Identification of HCL sites via desktop analysis;
- Review of HCL Sites; and
- Distribution of sites with summary of the collision problem and possible solution(s) to road operators for scheme development.

This document provides a detailed description of the steps involved in the initial stage of HCL Identification. Further information on the remaining process is detailed in Appendix A Network Safety Analysis Scheme Development Flowchart.

Although the Network Safety Analysis process focuses on site specific locations, this process feeds into other work carried out by TII Road and Tunnel Safety. Examples of this work include the use of material damage collision data for both macro and micro level assessments of the network. Further information on these supplementary outputs can be found in Section 2.2.

2.1 High Collision Location (HCL) Identification Analysis

The initial desktop study is based on spatial data. This includes injury collision data, exposure data, in the form of estimates of vehicle kilometre of travel, and network road link data. This work also includes refining the extent of the Reference Populations (RP) due to changes within the network since the previous analysis. All sites within the same RP are benchmarked against threshold levels (rates and frequency) established for that specific RP.

A HCL is a site on the network which exceeds two thresholds. The first based on collision frequency and a second based on a collision rate.

A HCL is defined as a site where the:

Collision frequency is greater than or equal to 3 or more collisions within the period of analysis (typically 3 years).

And

Collision rate is greater than twice the expected (average) collision rate for a RP.

These thresholds can be adjusted for each individual reference population. To show if collision rates are increasing or decreasing a benchmark rate is used. This rate is an older rate established in a previous period of analysis. The benchmark rate is occasionally updated so that it is within 10 previous study periods. In practice this means that current HCL sites are benchmarked against an older (likely higher) rate. If the benchmark rate for each RP was the current rate then the number of HCL sites would remain high and mask the improvements made to the network through engineering safety interventions. The following sections describe the process of identifying different road types, and the calculations used in identifying HCLs. All HCL sites are then subject to a site assessment. The following sub-sections provide more detail on the data used by TII to calculate these collision rates.
2.1.1 Reference Populations (RP)

PIARC (the World Road Association) consider a RP to be a subset of sites that have similar features and as such, are expected to have similar safety performances. The national road network can be divided into urban and rural sections. These urban and rural sections are typically defined based on the speed limits. The network can then be split/classified into different further subsets including motorway sections, single carriageway sections and dual carriageway sections.

The reference populations are currently defined as follows:

- Rural 2 Lane Roads
- Rural Dual Carriageways
- Urban 2 Lane Roads
- Urban Dual Carriageways
- Urban Motorways
- Rural Motorways

Each segment of the national road network is assigned to one of the six common reference populations. These segments are typically 1 kilometre in length and strive to be homogenous, as far as practicable, taking into account changes such as when county boundaries are crossed. On the assumption that reference populations have a similar safety performance, sites identified as HCLs are those sites where the collision rate and collision frequency are substantially above the average for the reference population.

The following subsections detail the calculations required to establish collision frequency and collision rates at both a site specific and RP level. These in turn are used as thresholds to establish HCL sites within the network.

2.1.2 Collision Frequency (C.F.)

Collision Frequency (C.F.) is used as one of the thresholds within Network Safety Analysis to identify HCLs. This threshold is subject to change as reported collision data improves but is typically defined as a site that has three or more injury collisions within the previous period of three years.

The below equation sets out how to calculate the average collision frequency for each RP:

Equation 1: Average Collision Frequency for the Reference Population

\[f_{rp} = \frac{\sum f_j}{n} \]

Where:

- \(f_{rp} \) = Average Collision Frequency for the Reference Population
- \(f_j \) = collision frequency at Site j of a Reference Population
2.1.3 Collision Rate (CR)

Collision Rate (CR) is the ratio between a number of collisions and an exposure measure. Within TII Road and Tunnel Safety, this measure is estimated vehicle kilometres travelled. Benchmark collision rates are used as thresholds that when exceeded identify HCL’s.

The below equations set out how to calculate collision rates for individual sites, for RPs as a whole, and to calculate the weighted annual average daily traffic (AADT).

Equation 2: Collision Rate for individual site \((j) \)

\[
R_j = \frac{f_j \times 10^8}{365.25 \times P L_j Q_j}
\]

- \(R_j \) = Collision rate of Site \(j \) (collisions per 100 Million veh-km)
- \(L_j \) = segment length of Site \(j \) (km)
- \(Q_j \) = average annual daily traffic of Site \(j \) (AADT)
- \(f_j \) = Collision frequency at Site \(j \)
- \(P \) = period of analysis (years)

Equation 3: Collision Rate for Reference Population

\[
R_{rp} = \frac{\sum f_j \times 10^8}{365.25 \times P \times \sum L_j \times Q_w}
\]

- \(R_{rp} \) = Average Collision Rate (collisions per 100 Million veh-km)
- \(L_j \) = segment length of Site \(j \) (km)
- \(Q_w \) = Weighted average annual daily traffic (AADT)
- \(f_j \) = Collision frequency at Site \(j \)
- \(P \) = period of analysis (years)

Equation 4: Weighted AADT

\[
Q_w = \frac{\sum (Q_j \times L_j)}{\sum L_j}
\]

Where:

- \(Q_w \) = Weighted average annual daily traffic (AADT)
- \(Q_j \) = AADT of Site \(j \)
- \(L_j \) = segment length of Site \(j \) (km)
2.2 Supplementary Data Outputs

While these guidelines document a very specific process around Network Safety Analysis, there are a number of supplementary data outputs from the process that can be used for other purposes.

The ratio of injury collisions to material damage only collisions allows for a deeper insight into the likely severity outcome of a single vehicle collision should it hit, for example, an engineered barrier as opposed to a tree or ditch. An example output of this type of analysis is presented in Appendix B.

In addition, a wider macro view (route scale – typically 100 km) of the network can be compiled from the detail found within individual sites (micro scale – typically 1 km) that the process is built around. For example, displaying the spatial distributions of particular collision types can help highlight any local concentrations within the network that may otherwise have been missed if patterns were only looked for at the micro scale. A typical output of this macro analysis is presented in Appendix C.
3. References

3.1 TII Publications (Standards)

3.2 Other documents

Appendix A:
Network Safety Analysis Scheme Development Flowchart
GE-STY-01036 NETWORK SAFETY ANALYSIS SCHEME DEVELOPMENT PROCESS

1. TII Safety Review Network to identify HCL sites
2. RRSE Review HCL sites
3. Documentation prepared and issued to TII RM
4. TII RM to issue review to each LA
5. Engineering Solution Recommended
6. Site closed out under current review.

Sites submitted by the LA for review must meet GE-STY-01035 criteria, or must include a completed LA 16 Form with road safety concerns

Where a Nra Engineering solution may be applicable TII notifies relevant bodies such as Gardai or Road Safety Authority.

LA identifys site(s) with safety concern

TII to liaise with TII RM to ensure safety schemes which are overlapping with other TII projects are taken into consideration at this time

Meeting between LAEC & RRSE

LAEC/CSF/NRO develop Concept Design, Programme Plan, Business Case

Draft FR reviewed by RRSE

LAEC submits FR to TII Safety for funding approval. Copy to RRSE

FMAC & PPP Schemes

FMAC and PPP contractors to review and develop remedial measures in accordance with FMAC and PPP contracts

Scheme reviewed by TII Safety

Funding Available

PRS Code generated for the scheme

Scheme list maintained for future consideration

Scheme Development Resources assigned

Schemes can be developed by LA’s, CSF or NRO

Scheme reviewed by TII Safety

Funding Available

Tender and Award

Abbreviations:
- NRO: National Roads Office
- RRSE: Regional Road Safety Engineers
- CSF: Consultant from TII Safety Framework
- FR: Feasibility Report
- HCL: High Collision Locations
- LAEC: LA Engineering Contact
- TII RM: TII Regional Management Team
Appendix B:

Likely Severity Outcome of all Primary Collision Types
Likely Severity Outcome of all Primary Collision Types on National Roads
(Jan 2014 – Sept 2016)

<table>
<thead>
<tr>
<th>Primary Collision Type</th>
<th>Count - Injury</th>
<th>Count - MD</th>
<th>Count - Total</th>
<th>Per Cent Chance of Injury (All NR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pedestrian</td>
<td>280</td>
<td>28</td>
<td>308</td>
<td>91%</td>
</tr>
<tr>
<td>Cyclist</td>
<td>164</td>
<td>50</td>
<td>214</td>
<td>77%</td>
</tr>
<tr>
<td>Head-On</td>
<td>321</td>
<td>234</td>
<td>555</td>
<td>58%</td>
</tr>
<tr>
<td>Parked Trailer/Skip</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>50%</td>
</tr>
<tr>
<td>Tree</td>
<td>63</td>
<td>86</td>
<td>149</td>
<td>42%</td>
</tr>
<tr>
<td>Road Edge - Water</td>
<td>4</td>
<td>6</td>
<td>10</td>
<td>40%</td>
</tr>
<tr>
<td>Wall - Pillar of Wall</td>
<td>14</td>
<td>25</td>
<td>39</td>
<td>36%</td>
</tr>
<tr>
<td>Head-On, Right Turn</td>
<td>41</td>
<td>83</td>
<td>124</td>
<td>33%</td>
</tr>
<tr>
<td>Wall - Stone</td>
<td>76</td>
<td>226</td>
<td>302</td>
<td>25%</td>
</tr>
<tr>
<td>Fence - Timber</td>
<td>17</td>
<td>53</td>
<td>70</td>
<td>24%</td>
</tr>
<tr>
<td>Lighting Pole</td>
<td>21</td>
<td>72</td>
<td>93</td>
<td>23%</td>
</tr>
<tr>
<td>Road Verge - Cutting</td>
<td>8</td>
<td>28</td>
<td>36</td>
<td>22%</td>
</tr>
<tr>
<td>Angle, Right Turn</td>
<td>118</td>
<td>453</td>
<td>571</td>
<td>21%</td>
</tr>
<tr>
<td>Island</td>
<td>9</td>
<td>36</td>
<td>45</td>
<td>20%</td>
</tr>
<tr>
<td>Wall - Brick</td>
<td>26</td>
<td>108</td>
<td>134</td>
<td>19%</td>
</tr>
<tr>
<td>Pole/Post - Other</td>
<td>45</td>
<td>192</td>
<td>237</td>
<td>19%</td>
</tr>
<tr>
<td>Road Verge - Embankment</td>
<td>38</td>
<td>174</td>
<td>212</td>
<td>18%</td>
</tr>
<tr>
<td>Road Edge - Ditch</td>
<td>239</td>
<td>1111</td>
<td>1350</td>
<td>18%</td>
</tr>
<tr>
<td>Fence - Concrete</td>
<td>7</td>
<td>33</td>
<td>40</td>
<td>18%</td>
</tr>
<tr>
<td>Rear End, Right Turn</td>
<td>43</td>
<td>204</td>
<td>247</td>
<td>17%</td>
</tr>
<tr>
<td>Fence - Wire Mesh</td>
<td>8</td>
<td>39</td>
<td>47</td>
<td>17%</td>
</tr>
<tr>
<td>Angle, Both Straight</td>
<td>94</td>
<td>537</td>
<td>631</td>
<td>15%</td>
</tr>
<tr>
<td>Footpath</td>
<td>8</td>
<td>46</td>
<td>54</td>
<td>15%</td>
</tr>
<tr>
<td>Barrier - Concrete</td>
<td>37</td>
<td>221</td>
<td>258</td>
<td>14%</td>
</tr>
<tr>
<td>Other</td>
<td>295</td>
<td>1805</td>
<td>2100</td>
<td>14%</td>
</tr>
<tr>
<td>Hedge</td>
<td>13</td>
<td>98</td>
<td>111</td>
<td>12%</td>
</tr>
<tr>
<td>Rear End, Straight</td>
<td>726</td>
<td>5845</td>
<td>6571</td>
<td>11%</td>
</tr>
<tr>
<td>Barrier - Steel</td>
<td>79</td>
<td>663</td>
<td>742</td>
<td>11%</td>
</tr>
<tr>
<td>Angle, Left Turn</td>
<td>20</td>
<td>173</td>
<td>193</td>
<td>10%</td>
</tr>
<tr>
<td>Side Swipe</td>
<td>353</td>
<td>3386</td>
<td>3739</td>
<td>9%</td>
</tr>
<tr>
<td>Sign On Post</td>
<td>11</td>
<td>107</td>
<td>118</td>
<td>9%</td>
</tr>
<tr>
<td>Rear End, Left Turn</td>
<td>15</td>
<td>146</td>
<td>161</td>
<td>9%</td>
</tr>
<tr>
<td>Bollard</td>
<td>5</td>
<td>50</td>
<td>55</td>
<td>9%</td>
</tr>
<tr>
<td>Barrier - Wire Rope</td>
<td>13</td>
<td>144</td>
<td>157</td>
<td>8%</td>
</tr>
<tr>
<td>Bridge</td>
<td>4</td>
<td>46</td>
<td>50</td>
<td>8%</td>
</tr>
<tr>
<td>Debris/Stone</td>
<td>3</td>
<td>44</td>
<td>47</td>
<td>6%</td>
</tr>
<tr>
<td>Parked Vehicle</td>
<td>36</td>
<td>531</td>
<td>567</td>
<td>6%</td>
</tr>
<tr>
<td>Open Door</td>
<td>1</td>
<td>20</td>
<td>21</td>
<td>5%</td>
</tr>
<tr>
<td>Animal - Domestic</td>
<td>4</td>
<td>130</td>
<td>134</td>
<td>3%</td>
</tr>
<tr>
<td>Animal - Non Domestic</td>
<td>5</td>
<td>208</td>
<td>213</td>
<td>2%</td>
</tr>
<tr>
<td>Shed Load</td>
<td>0</td>
<td>9</td>
<td>9</td>
<td>0%</td>
</tr>
</tbody>
</table>
Appendix C:

Macro View – Spatial Distribution of Fatal Collisions