About TII

Transport Infrastructure Ireland (TII) is responsible for managing and improving the country's national road and light rail networks.

About TII Publications

TII maintains an online suite of technical publications, which is managed through the TII Publications website. The contents of TII Publications is clearly split into 'Standards' and 'Technical' documentation. All documentation for implementation on TII schemes is collectively referred to as TII Publications (Standards), and all other documentation within the system is collectively referred to as TII Publications (Technical). This system replaces the NRA Design Manual for Roads and Bridges (NRA DMRB) and the NRA Manual of Contract Documents for Road Works (NRA MCDRW).

Document Attributes

Each document within TII Publications has a range of attributes associated with it, which allows for efficient access and retrieval of the document from the website. These attributes are also contained on the inside cover of each current document, for reference. For migration of documents from the NRA and RPA to the new system, each current document was assigned with new outer front and rear covers. Apart from the covers, and inside cover pages, the documents contain the same information as previously within the NRA or RPA systems, including historical references such as those contained within NRA DMRB and NRA MCDRW.

TII Publication Attributes

<table>
<thead>
<tr>
<th>TII Publication Title</th>
<th>Management of Buried Concrete Box Structures</th>
</tr>
</thead>
<tbody>
<tr>
<td>TII Publication Number</td>
<td>AM-STR-06020</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Activity</th>
<th>Asset Management & Maintenance (AM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stream</td>
<td>Structures (STR)</td>
</tr>
<tr>
<td>Document Number</td>
<td>06020</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Document Set</th>
<th>Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>Publication Date</td>
<td>June 2014</td>
</tr>
<tr>
<td>Historical Reference</td>
<td>NRA BA 88</td>
</tr>
</tbody>
</table>

NRA DMRB and MCDRW References

For all documents that existed within the NRA DMRB or the NRA MCDRW prior to the launch of TII Publications, the NRA document reference used previously is listed above under 'historical reference'. The TII Publication Number also shown above now supersedes this historical reference. All historical references within this document are deemed to be replaced by the TII Publication Number. For the equivalent TII Publication Number for all other historical references contained within this document, please refer to the TII Publications website.
Management of Buried Concrete Box Structures

June 2014
Summary:

This Advice Note provides guidance for the systematic management of buried concrete box structures. It discusses factors that affect durability. It gives advice on inspection for and measurement of defects and provides maintenance advice. It offers guidance on structural assessment and provides indicators for priority of repair works.
VOLUME 3 ROAD STRUCTURES: INSPECTION AND MAINTENANCE

SECTION 3 REPAIR

PART 6

NRA BA 88/14

MANAGEMENT OF BURIED CONCRETE BOX STRUCTURES

Contents

Chapter

1. Introduction
2. Guidance on Inspection
3. Guidance on Structural Assessment
4. Operational and Maintenance Issues
5. References
6. Enquiries
1. INTRODUCTION

1.1 In Ireland, buried concrete box structures are often used as culverts and underpasses through road embankments. Most buried concrete box structures are performing well and have required little in the way of maintenance. However, a number of common defects were identified which, without proper maintenance, will reduce the service life of the structures. These include the lack of, or breakdown of, waterproofing systems and poor drainage of the surrounding backfill. In most cases the subsequent deterioration, i.e. the spalling of the concrete cover to the reinforcement, was associated with the ingress of groundwater. At a number of sites, differential ground movements had led to the cracking of boxes and to the failure of joints between individual units. Less common defects included the silting of inverts, undermining by scour, degradation of concrete by one or other chemical reactions and cracking induced by high loads.

1.2 Many of the documents for inspection, assessment and maintenance of concrete structures were written primarily for concrete bridge decks. Much of this information applies to managing buried concrete box structures and that information will be referenced.

1.3 This Advice Note provides additional information for managing buried concrete box structures to achieve a minimum whole life cost.
2. GUIDANCE ON INSPECTION

General

2.1 The in-service performance of buried concrete box structures should be monitored in accordance with requirements for road structures given in the NRA Eirspan Bridge Management System. These documents are applicable to a range of road structures and, although forming a comprehensive inspection and reporting schedule, buried structures were omitted during the first phase of the structural assessments. NRA BD 301, along with the NRA Eirspan Bridge Management System documents provide comprehensive advice on the inspection of buried concrete structures.

Identification of Common Defects

2.2 Buried concrete box structures may suffer from a number of common defects which, in the absence of proper maintenance, will reduce their service life. Although some problems occur with both cast insitu and precast structures, others are specific to the type of construction. The main areas of concern are as follows:

(a) Shrinkage cracks may be evident on cast insitu structures. These are usually a result of the construction process and in most cases do not present a problem. However, on occasions the cracks may extend through the full thickness of the walls and slabs, thus allowing ingress of water (either or both groundwater and carried effluent) to the reinforcing steel and threatening the long-term durability of the structure. In one case full depth cracks were due to concrete cube strength considerably exceeding the specified strength for which the crack control reinforcement was designed. Precast units are less likely to exhibit shrinkage cracking because better control during casting ensures a denser and more consistent finish. However, precast units require careful handling to avoid accidental damage during placement.

(b) Differential settlement is likely to occur under high embankments built on soft ground. This may lead to vertical cracking of a buried concrete box structure, which is inherently susceptible to differential ground movements unless it is provided with a sufficient number of adequately spaced movement joints. Insitu concrete box structures constructed with too large a spacing between joints are particularly prone to cracking by differential movements. With both insitu and precast concrete box structures, differential ground movements may also induce failure of the joints between units. Another common problem associated with differential movement is cracking of concrete in wing walls and at the opening of joints between the wing walls and box structure.

(c) Joints between structural units may fail with the joint seal debonding from one or both faces. Commonly, joint failure occurs through relatively modest differential movements between box sections. The deterioration of such joints allows the passage of water through the structure often in preference to the designed drainage routes. This in turn may lead to the concrete adjacent to a joint becoming spalled, with the associated risk of corrosion of the reinforcement. Cast insitu structures have the additional risk of deterioration of the construction joints between roof and side walls or side walls and base.

(d) Waterproofing of a structure may deteriorate allowing ingress of water; evidence suggests that waterproofing systems are most likely to fail in the vicinity of impaired construction joints. Structures with waterproofing membranes on their top slab and with drainage systems behind the side walls perform better than those without such features. Poor detailing on early structures, where the waterproofing membranes did not extend at least 200mm below the soffit of the top slab, as now required by NRA BD 57, may contribute
to a breakdown in the waterproofing system. Failure of the drainage system may also lead to a build-up of hydrostatic pressure and possible leakage of the waterproofing system (see also Section 4.1(b)).

(e) Detailing faults and poor workmanship during construction may lead to localised deterioration of the structure. The detailing of wing and head walls is sometimes a weak link in the overall design, leading to problems with cracking described above. In some cases the top slab has been damaged by careless installation of parapets and safety fences above the structure. In some instances, the holding down bolts have penetrated through the roof of the structure, thereby allowing the ingress of water. Identification of these problems at an early stage means that remedial work is minimal compared with that required when further deterioration occurs.

Identification of Less Common Defects

2.3 Although the following causes of defects are infrequent, where they do occur they can have a severe effect on the structural integrity so it is important to identify them correctly.

(a) Scour and undercutting of the end elevations may occur with a culvert carrying a watercourse. If scour is allowed to continue, the structure will be undermined.

(b) Mining of coal and other minerals may propagate ground movement in the vicinity of the structure. Information about mining activities should be held on the bridge record file. Because the vertical loads applied to a buried concrete box structure are distributed over its base, early signs of distress will be those associated with severe differential movement. If the structure is in a high-risk area, recent structural designs should have taken the effects of mining subsidence into account: therefore, older structures are most at risk.

(c) Degradation of reinforced concrete may result from chemical reactions between constituents of the cement and the aggregate or between constituents in the concrete and surrounding soils or ground water. Alkali Silica Reaction (ASR) is an expansive reaction of the alkali in cement and silica in the aggregate: it can induce extensive cracking of concrete. To date, no cases of deleterious ASR have been identified in Ireland. Other reactions which may occur include the oxidation of reduced sulfur compounds (such as pyrite) in structural backfill to produce the thaumasite form of sulfate attack on buried concrete. Further information of this severe form of sulfate attack is given in NRA BA 35. The presence of chloride ions, derived from de-icing salts, may promote the corrosion of the steel reinforcement. Apart from the latter, cases of deterioration of the concrete in box structures by any of the above mechanisms are few and far between but, where identified, expert advice may need to be sought on appropriate remedial measures.

(d) Cracking through excessive loading might be seen on structures with particularly low depth of cover and which were not designed to carry abnormal (HB) loads. Such cracks might open and close with the passage of particularly heavy vehicles, but the crack may widen with time and its edges might be fretted away by movements or weathering. In such cases expert advice may need to be sought.
Identification of Source of Deterioration

2.4 To ensure that the appropriate maintenance works are planned, costed and undertaken effectively, it is essential to identify the cause of any deterioration. It is particularly important to distinguish between problems of durability and those of structural performance, thus it is essential to identify the source of any cracking.

Recording Data

2.5 The National Roads Authority uses the Eirspan Bridge Management System to record data for all its road structures. Details of the defects shall be recorded in the Eirspan Bridge Management System database.

2.6 Figure 2.1 is the type of diagram that may be used in an inspection report. Areas of deterioration should be highlighted and descriptive notes added to the sketch. The diagram should be backed-up by good quality photographs.

2.7 The amount and type of data to be collected and recorded varies with the type of inspection and the degree of deterioration encountered but, in many cases, an extensive testing regime may not be necessary. Refer to the NRA Eirspan Bridge Management System for further guidance on the information to be captured. The type of data may include some of the following:

- Extent and condition of any exposed reinforcement
- Extent and severity of cracking
- Depth of carbonation
- Depth of penetration of chloride ions
- Areas of seepage, presence of leachates and deposits and their chemical composition
- Extent and location of any areas of permeable concrete
- Soundness of surface – for example using “hammer” tests
- Results of half-cell potential surveys
- Resistivity measurements
- Depth of cover to reinforcements
- Condition of joints and seals.
Figure 2.1 Example of a diagram that may be used in an inspection report
3. GUIDANCE ON STRUCTURAL ASSESSMENT

General

3.1 NRA BD 303 outlines the methodology which shall be adopted by all parties in the assessment of the road structure stock as part of a preliminary Stage I Assessment of structures on the national road network. For many structures, as built drawings will either not be available to the Engineer, or not provide sufficient information to carry out an assessment. The Engineer will need to verify construction form and ascertain further details. In these cases, guidance on the investigations and testing which may be required is given in NRA BD 303.

3.2 NRA BD 304 outlines the methodology which shall be adopted by all parties in the assessment of the road structure stock as part of a Stage II Assessment of structures on the national road network.

3.3 Unless buried concrete box structures are thought to have a reduced load capacity as a result of serious deterioration, foundation deficiency, inadequacy of backfilling material or damage, as determined from inspections, they shall not be assessed if they are:

(a) culverts and buried structures of 3 metres span or less with cover of 1 metre or more (see NRA BD 101);

(b) culverts and buried structures of less than 1.8 metres span and multi-cell culverts of 5 metres span or less (see NRA BD 101);

(c) non-masonry culverts or structures which are buried to an extent that road loading is only of marginal significance when compared with the magnitude of earth pressure and permanent (dead) loads acting on the structure.

Documentation for Assessment

3.4 The assessment of road structures is covered by a number of documents within the NRA DMRB. These include NRA BD 21, NRA BA 16, NRA BA 55, NRA BD 44 and NRA BA 44. Alkali silica reaction and corrosion in concrete structures are covered in NRA BA 52 and NRA BA 51 respectively. Most of these documents were written primarily for bridge decks and so some of the rules and advice within them are not directly applicable to buried concrete box structures.

3.5 An assessment might be undertaken according to the design standard (i.e. NRA BD 31) but, as stated in NRA BA 55, the application of unmodified rules given in that standard is likely to underestimate the load-carrying capacity of the structure.

Guidance

3.6 The assessment of the performance of buried structures should follow the recommendations given in NRA BA 55 which advises that substructures need not be assessed by calculations unless they show evident signs of distress. If qualitative assessments show up defects which affect load-carrying capacity, then assessment by calculation is normally carried out to the requirements of NRA BD 21 and NRA BD 31. With these calculations, more emphasis is placed on ultimate rather than serviceability limit states and in most cases reductions in the partial factors of safety used for design can be adopted because assessment can be based on known performance and material properties. NRA BA 55 provides guidelines on the amendments that could be made to design rules given in NRA BD 31 to make them more suitable for assessment purposes. These are covered below:
(a) NRA BD 21 is to be used instead of NRA BD 37. Loads for particular vehicles that use
the in-service structure are given in NRA BD 21 Annexes D and E.

(b) The failure of a structural element to meet its serviceability check does not mean that any
remedial action is required. A serviceability failure might affect the management of a
structure e.g. the frequency and type of inspections. Guidance should be sought from the
NRA on the recommendations for the management of the structure. Furthermore, only
load combination 1 (from NRA BD 37) should be considered unless there are signs of
tilting, possibly resulting from braking forces. This seems a reasonable consideration, but
note that tilting of a buried concrete box structure is an extremely unlikely event and if
any such movements were noticeable under live loading it would be prudent to undertake
remedial works as a matter of urgency.

(c) Only the ultimate limit state of the soil should be checked. (The likelihood of any
structure failing by sliding on its base or overturning about one of its bottom edges is
remote: but where it is suspected to occur see (b) above. Furthermore, although
serviceability calculations may not be particularly useful, it could be beneficial to install
instrumentation to monitor settlement with time as this might provide some indication of
the likelihood of further damage to the concrete box. Although costs of setting up
instrumentation, say, may be considered expensive, the benefits gained may avoid the
need for costly repair works, which may otherwise have unnecessarily been carried out.)

(d) Where there are signs of movement or tilting of a structure, assessment should be carried
out using braking forces and unequal earth pressures. (This is not unreasonable, but such
an assessment is likely to be unnecessary, see (b) and (c) above.)

3.7 Additional information to that listed in Section 2.7 is required for assessing structural stability
including the following:

- strength of concrete;
- the residual strength of the steel reinforcement, this will entail investigation of the size
 and properties of the steel reinforcement;
- the depth of cover and the properties of the overburden and surrounding soils.

3.6 It should be emphasised most strongly that calculations should only be undertaken where a
buried concrete box structure shows severe deterioration, evidence of distortion or
continuing movement. Furthermore, it would be more useful to install instruments to monitor
movements than undertake calculations (see 3.6 (c) above). Note that rarely will it be necessary to
check serviceability conditions by calculation, because this is better assessed visually, i.e. from
monitoring or physical surveys of the structure.
4. OPERATIONAL AND MAINTENANCE ISSUES

General

Operational Issues

4.1 It is best practice to deal with the following, where applicable, on a routine basis to prolong the life of a buried concrete box structure:

(a) Silting of an invert commonly occurs with culverts built on waterlogged ground or where flow rates are low. This makes it difficult to inspect the condition of the invert and hence ensure it remains in good order. Clearance of silt, debris and vegetation using mechanical plant needs to be supervised and carried out with care to avoid damaging the structure.

(b) Drains may become blocked leading to a build-up of hydrostatic pressure and possible breakdown of the structure’s waterproofing. Pipes and weep holes should be inspected on a regular basis and if found to be blocked they should be cleaned. For buried concrete box structures, which function as either a vehicular access or a pedestrian subway, internal gullies and drainage pipes should be routinely inspected and maintained.

(c) Vandalism may damage the internal fabric of a structure and is usually a local hazard confined to structures where pedestrian access is possible. Superficial damage to lights, fittings, and drainage and by fire are in most cases not structurally significant but their early repair may prevent further deterioration. The effects of graffiti on unprotected concrete does not in itself present other than an aesthetic problem, but the process of cleaning by abrasion or aggressive solvents may cause minor surface damage if inappropriate treatment is used.

(d) Cracking of mortar joints may occur and joint seals can perish. Where this occurs they should be repaired or replaced to prevent deterioration due to the ingress of water or effluent.

Cost Issues for Routine Maintenance

4.2 Currently the annual cost of routine maintenance of buried concrete box structures averages out at less than about 1% of the cost of replacing them. This level of maintenance covers both works to repair common defects (where they were of a localised nature) as listed in Sections 2.2 and 2.3, and also to maintain satisfactory operation of the buried concrete box structure as described in Section 4.1. In essence most works consisted of clearing silt and obstructions, unblocking drains and removal of graffiti. The replacement of perished seals and cracked mortar joints was also quite common. In some cases minor repairs with epoxy cements had been made to small areas where spalling had exposed the reinforcement. In some instances where full height cracks had developed due to differential movements, the cracked areas had been broken out all the way around the structure and the gap filled with a sealant; thus effectively creating a movement joint.

4.3 Following the definition presented in CIRIA Report 122 (Ferry and Flanigan, 1991) a buried concrete box structure is an asset that would be categorised within “those with a relatively long life expectancy and low irregular operational and maintenance costs”. Because initial capital costs predominate, the small recurrent costs of maintenance fade into insignificance and on this basis regular maintenance is the better option than early replacement of a structure.
Management of More Critical Defects

4.4 NRA BA 55 advises that buried concrete box structures need not be assessed by calculations unless they show evident signs of distress. If, however, qualitative assessments show up defects which affect load carrying capacity, then assessment by calculation is normally carried out as described in Section 3.4. With these calculations, more emphasis is placed on ultimate rather than serviceability limit states and in most cases reductions in the partial factors of safety used for design can be adopted because assessment can be based on known performance and material properties. Furthermore, a more detailed method of analysis of the structure may be carried out since this sometimes prevents unnecessary expenditure on the strengthening or replacement of perfectly serviceable structures.

4.5 Tilting of a buried concrete box structure is an extremely unlikely event but if any such movements are noticeable under live loading it would be prudent to undertake remedial works as a matter of urgency.

Cost Issues for More Extensive Renovation

4.6 Where assessment by calculation has shown the buried concrete box structure has a critical defect, a more detailed or advanced method of analysis of the structure may be carried out since this sometimes prevents unnecessary expenditure on the strengthening or replacement of perfectly serviceable structures.

4.7 More extensive renovation may be necessary in a few cases, particularly to older structures constructed at a time when design standards were not so demanding as they are now. Extensive renovation works involving renewal of the soffit or waterproofing system, or strengthening using a reinforced concrete saddle needs careful consideration to determine whether site specific constraints make replacement a more attractive option. Site specific constraints and considerations include the following:

(a) For a culvert, the cost of temporarily diverting the watercourse. For underpasses and subways, alternative routes for vehicular and pedestrian through traffic may be required.

(b) Traffic management and traffic delays: these might be substantial for structures on the national road and motorway network.

4.8 The following may also need to be considered:

(a) A number of structures were built without contiguous waterproofing systems and have had such systems installed in the past decade or so.

(b) An alternative is to reline the structure with, for example, a glass reinforced plastic liner. This can avoid traffic management and statutory undertakers’ costs.

Management of Environmental Issues

4.9 Where work is to be carried out on the structure, environmental issues such as fish migration and mammal ledges should be given consideration.

4.10 Where the integrity of structural concrete can be adversely affected by urea, animal slurry, diesel spillage etc. sacrificial linings should be given consideration.
5. REFERENCES

5.1 NRA Design Manual for Roads and Bridges (NRA DMRB)

- NRA BA 16 The Assessment of Road Bridges and Structures
- NRA BA 35 Inspection and Repair of Concrete Road Structures
- NRA BA 44 The Assessment of Concrete Road Bridges and Structures
- NRA BA 51 The Assessment of Concrete Structures Affected by Steel Corrosion
- NRA BA 52 The Assessment of Concrete Structures Affected by Alkali Silica Reaction
- NRA BA 55 The Assessment of Bridge Substructures and Foundations, Retaining Walls and Buried Structures
- NRA BD 21 The Assessment of highway Bridges and Structures
- NRA BD 27 The Protection and Repair of Concrete Road Structures
- NRA BD 44 The Assessment of Concrete Road Bridges and Structures
- NRA BD 101 Structural Review and Assessment of Road Structures
- NRA BD 31 The Design of Buried Concrete Box and Portal Frame Structures
- NRA BD 37 Loads for Road Bridges
- NRA BD 57 Design for Durability
- NRA BD 301 NRA Structure Management System (EIRSPAN) - Principal Inspection Manual
- NRA BD 303 The Stage I Structural Assessment of Sub-Standard Road Structures
- NRA BD 304 The Stage II Structural Assessment of Sub-Standard Road Structures

6. ENQUIRIES

6.1 All technical enquiries or comments on this document or any of the documents listed as forming part of the NRA DMRB should be sent by e-mail to infoDMRB@nra.ie, addressed to the following:

“Head of Network Management, Engineering Standards & Research
National Roads Authority
St Martin’s House
Waterloo Road
Dublin 4”

..

Pat Maher
Head of Network Management,
Engineering Standards & Research