DN-PAV-03021 Analytic Pavement & Foundation Design Pavlos Zoulis ARUP

TII Standards Roadshow 2023 17th May 2023

Introduction to DN-PAV-03021

- This document will guide a pavement designer through the design process for new pavements and the strengthening of existing pavements.
- The design of flexible and flexible composite pavement types only are considered within this publication

Tll's Sustainability Implementation Plan

Provide effective, efficient and equitable mobility

Enable compact urban growth and regional accessibility through networks and services that support more efficient journeys, more effective connectivity and increased accessibility.

Enable safe and resilient networks and services

Enable safe, secure, accessible and inclusive travel through the provision of transport networks, systems and services that are resilient to future change.

Collaborate for a holistic approach

Develop smart and sustainable assets and services through innovating and improving the planning, design, construction, operation and maintenance of the transport network, increasing collaboration and systems-thinking to seek mutual gains and mitigate negative externalities. Ľ

Deliver enhanced whole life-cycle value through impact and influence on stakeholders, partners and suppliers.

Leadership, Collaboration and Partnership

Deliver end-to-end improvements

Transition to net zero

Reduce the carbon impact of construction, operation and use of the transport network through responsible use of resources, reuse and repurposing, as well as driving the net-zero transition and enabling customers to make more sustainable choices.

Create total value for society

Maintain and enhance the balanced delivery of economic, environmental and social value through robust planning, rigorous appraisal and decisions that prioritise sustainability.

Working Together and Enabling People

Significant updates to the document

- The new document introduces the Irish Analytic Pavement Design Method (IAPDM) software
- Pavement designs will be carried out using IAPDM web-based software.
- Capabilities to analyse new construction pavements and existing pavement strengthening options.
- IAPDM allows the consideration of actual material performance characteristics

Why a change was necessary

DN-PAV-03021(December 2010):

- TRL Report LR1132 (1984)
- TRL Report 615 (2004)
- Restricted materials
- Materials, production and construction from 38 years ago

¹⁰Design Traffic Left Hand Lane (msa)¹⁰⁰

1000

New Pavement Design Process (NPDP) - Part 1

New Pavement Design Process (NPDP) - Part 2 Select Trial **Determine Design**

NPDP Step 1 - Design Section Identification

- on the following conditions:
 - Lane configuration
 - Traffic Loading in design lane / most heavily trafficked lane
 - Subgrade design stiffness

Single Carriageway with 4 lanes

TII Standards Roadshow – DN-PAV-03021

The start and end chainages of design sections for new pavements are to be defined based

Wheel Load

Wearing Surface

Base Course

Subbase

Subgrade

NPDP Step 3 – Select Pavement Materials

The aspects that should be considered by the designer when considering pavement types and materials are listed below:

- Traffic Loading type
- Material availability
- Material Cost
- Maintenance Requirements throughout the pavement lifecycle
- Material Embodied Carbon
- Possibility for material re-use at asset end of life

NPDP Step 5 - Material Characterisation

Materials are divided into two categories:

- Design Level 1 (DL1) includes a catalogue of pre-exiting pavement material mixtures
- Design Level 2 (DL2) allows for an improved consideration of the long-term performance characteristics of a material based on a laboratory evaluation of the material.

Performance Requirements of DL2

Performance requirements vary based on the following types:

- Bituminous Bound Materials
- Hydraulically Bound Granular Materials
- Low Energy Bound Materials
- Unbound Granular Materials

Pavement Material	Performance Characteristic			
Bituminous	 Stiffness 			
	 Resistance to Fatigue (Cracking), 			
Unbound Granular	 Stiffness 			
Hydraulically Bound Granular	 Stiffness 			
	 Resistance to Fatigue (Cracking) 			
Low Energy Bound Material	 Stiffness 			
	 Resistance to Fatigue (Cracking) 			

Table 2.4 New Pavement Material Performance Characteristics

B1.1 Bituminous Bound Materials

Table B1 Bituminous Bound Material Works Performance Testing for Design Level 2

С	Test Method ¹	Performance	Performance Category		
Stiffness ¹	Indirect Tensile Stiffness Modulus	≥1800	S1		
	(MPa) EN 12697-26:2018 Annex C	≥2500	S2		
		≥4500	S3		
		≥6500	S4		
Resistance to	ϵ_6 (failure strain level at 1x10 ⁶ load	<130	F1		
Fatigue	repetitions)	≥130	F2		
	IT-CY at 20°C	≥190	F3		
Notes: 1. The above limits relate to	o the minimum of the average of the results from a s	set of test specimens.			

2. Works testing frequencies to be agreed with TII Network Management on a project specific basis.

Pavement Strengthening Design Process (PSDP) – Part 1

Figure 3.1 Existing Pavement Assessment and Maintenance Intervention Design Process

Pavement Strengthening Design Process (PSDP) – Part 2

Figure 3.1 Existing Pavement Assessment and Maintenance Intervention Design Process

PSDP step 1 – Collect Existing Pavement Data

are to be used in the assessment of the existing pavement capacity.

PAMS Data:

- Road Surface Profilometer
- Laser Crack Measurement System
- Ground Penetrating Radar
- As built records

Scheme level surveys:

- Visual Inspection
- Falling Weight Deflectometer (FWD)
- Coring

Information from the Pavement Asset Management System (PAMS) and scheme level surveys

537	15!	99.	6	_	j
16.190	16.200	16.211	16.221	16.231	
				=	
			部の法律		

Development of the IAPDM

- Mechanistic-Empirical Pavement Design
- United States, Netherlands, France, Austria
- Material performance characteristics
- Irish environmental and loading conditions
- Long term performance e.g. cracking, deformation

Development of the IAPDM

Model calibration through laboratory investigations

AC 32 dense base 40/60

IAPDM Overview

- 1. Mechanistic Empirical pavement design method developed for Irish conditions.
- 2. Customise a pavement structure based on the locality of **Conditions and Materials**
- 3. Pavement Responses due to traffic loading are calculated using a Multi - Layer Linear Elastic model (Mechanistic Part)
- 4. These responses are transferred to structural capacity through empirical models (Empirical part)

IAPDM on line tool – Part 1

Project Dashboard	Dashboard & Search
New Project / Design	PROJECTS
Aggregate Register	3
🥢 Materials Database	Projects Created by You
P Help	
A Feedback	YOUR Projects 1 active projects
	K Projects
	Name
	N5 Turlough to Westport Road Project
	test
	IAPDM Layer Stiffness Sensitivity Analysis

TII Standards Roadshow – DN-PAV-03021

Design models within web-based software. To request access to the IAPDM please send your email address and mobile phone number to iapdm@tii.ie.

designs 18				
Designs Created by You				
Code	Desi	gns	Status	
001	2		Active	Edit
01	3		Closed	View

13

Closed

0001

IAPDM on line tool – Part 2

Analysis Output

Layer No	Layer Type	Material	Thickness (mm)	Design Stiffness (MPa)	Poisson's Ratio	Critical Response Type	Critical Response Value	Structural Capacity (msa)	N/Nf	
1	Surface	SMA	40	2000	0.35	No tension	0	0.0	0.00	Success
2	Binder	AC20 40/60	60	4700	0.35	No tension	0	0.0	0.00	Success
3	Base 1	AC32 40/60	185	4700	0.35	epsilon r (Microns)	-80	21.4	0.93	Success
4	Unspecified	Not Considered	0	0	0.00	None	0	0.0	0.00	No Layer
5	Subbase	UGM A (CC-SPW- 00800)	150	200	0.35	N/a	-	-	-	No Model
6	Capping	6F2 (CC-SPW- 00600)	250	100	0.35	N/a	-	-	-	No Model
7	Subgrade	Subgrade	Semi-infinite	77	0.45	epsilon z (Microns)	1020	2898.6	0.35	SUCCESS / SUCCESS / SUCCESS

FC = II

Surface Modulus = 122

Implications of DN-PAV-03021

Design

- Optimal material usage
- In-situ material characterisation
- Wider range of materials
- Digital design record

End of Life Re-purpose / Re-use

- Digital design records
- Support material
- reuse/recycling at EoL

Pavement Lifecycle

Maintain / Operate

TII Standards Roadshow – DN-PAV-03021

Procure

- Alternative designs
- Promote new technologies
- Green scorecard / LCM

Construct

- Improved quality control
- Performance linked

- Optimised rehabilitation design / material usage - Wider range of materials - Digital design records to support asset management