Recent Developments in Standards and Specifications for Road Schemes

Road Geometry

NRA TD 9

NRA TD 301

Martin Allen (Arup)

Road Geometry Updates

- NRA TD 9 Road Link Design
 - Updates to Existing Standard
- NRA TD 301 Geometric Design Of Junctions
 - New Junction Standard

Publication in June 2015

Principal Updates:

- NRA TD 10 has been amalgamated into NRA TD 9
- Type 2 & 3 DC added to Rural Road Layouts in Table 6/1
- Distinction between **Bands A and B Design Speed** removed
- Definitions for Urban Street and Urban Relief Road included
- Broken Back Curves defined

Hidden Dips

• An amended definition for a hidden dip / FOSD along with diagrams to illustrate is now included (Clause 7.33).

Hidden Dips

ARUP

Sight Distance Updates

- Tables 2/1 and 2/2 showing the permitted relaxation in Stopping sight distance remote from and in the vicinity of a junction are included. (Previously included in Annex B).
- Motorways and Dual Carriageways a **one step** Relaxation below the Desirable Minimum Stopping SSD to the **high object** in combination with an uphill gradient relaxation is now permitted (remote from junction only).

	Associated Relaxation	Motorways		Type 1, 2 and 3 Dual Carriageways		Type 1, 2 and 3 Single Carriageways	
		High Object	Low Object ¹	High Object	Low Object ¹	High Object	Low Object ¹
1	No relaxation in horizontal curvature, vertical curvature, gradient or superelevation.	1 Step ^(2,3)	2 Steps (3)	2 Steps (3)	2 Steps ⁽³⁾	2 Steps (5)	2 Steps ⁽⁵⁾
2	1 Step relaxation in horizontal curvature.	1 Step ^(2,3)	2 Steps (3)	1 Step ^(2,3)	2 Steps (3)	1 Step (2,4,5)	2 Steps (5)
3	2 Step relaxation in horizontal curvature.	None ⁽²⁾	1 Step	None ⁽²⁾	1 Step	None ^(2,4)	1 Step (4,5)
4	3 Step relaxation in horizontal curvature.	None ⁽²⁾	None (2)	None ⁽²⁾	None	None ^(2,4)	None (2,4)
5	4 Step relaxation in horizontal curvature.	None ⁽²⁾	None ⁽²⁾	None ⁽²⁾	None	None ^(2,4)	None ^(2,4)
6	Relaxation in vertical curvature.	None ⁽²⁾	1 Step	None (2)	1 Step	None (4,5,6)	1 Step (4,5)
7	Uphill Gradient relaxation	1 Step (2)	2 Steps	1 Step (2)	2 Steps	None ^(2,4)	1 Step (4,5)
8	Downhill Gradient relaxation	None ⁽²⁾	1 Step	None ⁽²⁾	1 Step	None ^(2,4)	1 Step (4,5)
9	Crossfall relaxation.	None ⁽²⁾	1 Step	None ⁽²⁾	1 Step	None ^(2,4)	1 Step (4,5)

Band C Curvature

• TD 9/12 recommends that use of horizontal curvature within Band C is avoided but does not require a departure.

ARUP

An tÚdarás um Bóithre Náisiúnta National Roads Authority

Band C Curvature

New Road Design:

• The use of radii in Band C is now regarded as a departure from standard for new road schemes (Clause 7.28)

Existing Online Improvement:

• Use of Band C curves permitted as a relaxation from standard for online improvements to existing roads (Clause 7.29) and on regional and local roads (Clause 9.19)

Road Camber

 Clause 3.1 – As a relaxation, a camber of 3% may be appropriate on steep sections of wider carriageway to reduce drainage path lengths.

• For narrow local roads, a continuous crossfall between the edges of the road is a permitted relaxation.

Two-way Single Carriageways (Vertical Curve Design)

Two-way Single Carriageways (Vertical Curve Design)

Two-way Single Carriageways (Vertical Curve Design)

- Unless FOSD is provided, the crest K value should not be greater than <u>Desirable Minimum</u>
- Definition of Overtaking Section
- Approach to Line-Marking

New Chapter 10

'Geometric Design to Improve Surface Drainage of Carriageways'

- Incorporates IAN 09/13 into standard
 - Issue of Aquaplaning not given sufficient prominence in existing geometric standards (TD 9/12)
 - Road surface geometry has the most direct influence on the surface flow and the build-up of storm water runoff
 - Places avoidance of aquaplaning as a geometric design issue

New Chapter 10

- Introduces mandatory design requirements to limit water film depths and minimise aquaplaning risk

- Increases the minimum resultant gradient from 0.5% to 1%

- Requires the designer to compile and <u>Aquaplaning Assessment</u> <u>Report</u> for submission to the NRA at <u>Preliminary Design Stage</u>

Drainage Flow Path - Length

• WFD analysis to be carried out on <u>Critical Drainage Path</u>

- Contour plot at typical Rollover Location:

Calculation of WFD (Gallaway Method)

• Empirical equation developed by Gallaway et al. to determine Water Film Depth:

$$D = \frac{0.103 \times T^{0.11} \times L^{0.43} \times I^{0.59}}{S^{0.42}} - T$$

Where,

- D = Water film depth above pavement texture (mm)
- T = Average pavement texture depth (mm)
- L = Length of drainage path (m)
- I = Rainfall Intensity (mm/hr)
- S = Slope of drainage path (%)

Assessment Criteria

- To minimise aquaplaning potential, geometric design must ensure:
 - Water film depths must not exceed 2.5mm on single carriageways
 - On Motorways & Dual Carriageways, a maximum value of 3.3mm will apply
 - Road surface geometry shall be such that flow paths are limited to <u>about 60m</u> in length

Rolling Crowns

• Superelevation applied along diagonal crown line across carriageway

- Instantaneous change in crossfall (must not exceed 5%)
- Crown lines must be sufficiently long to achieve satisfactory ride quality
- A <u>Departure from Standards</u> on high speed roads

• New NRA standards which **combines existing junction standards** into a single comprehensive document

Geometric Design of Priority Junctions and Vehicular Accesses to National Roads – Principal Changes:

- Junction Siting:
 - Junctions located on the inside of sharp curves (below Desirable Minimum R as per NRA TD 9) now regarded as a Departure.
- Vertical Alignment:
 - Maximum 2% gradient on **major road** approaches to junctions now mandatory
- Level of Provision Simple Junction
 - Simple junctions shall only be used for new rural junctions when design flow for right turns does not exceed 120 vehicles AADT (Major road not exceeding 13,000 AADT)

Geometric Design of Priority Junctions and Vehicular Accesses to National Roads – Principal Changes:

- Dwell Area / Gradient
 - In the case of a dwelling access, a combined relaxation in dwell area and approach gradient is not regarded as a departure
- Channelising Islands
 - Rural channelising islands shall be raised and kerbed and constructed in accordance with RCD/1100/09
- Junction Corner Radii
 - 13m at Rural Simple Junctions (verify by swept path analysis)

Geometric Design of Priority Junctions and Vehicular Accesses to National Roads – Principal Changes:

• Merge / Diverge Tapers

Geometric Design of Priority Junctions and Vehicular Accesses to National Roads – Principal Changes:

- Merge / Diverge Tapers
 - Merge / Diverge **auxiliary lanes & tapers** not permitted on Single Carriageways
 - Merge / Diverge **tapers** not permitted on Dual Carriageways
 - Auxiliary lane merge / diverge layouts on Dual Carriageways designed to Chapter 7 (i.e. TD 22 standards)

Geometric Design of Roundabouts – Principal Changes:

• Roundabout type terminology amended to:

Single Lane and Multi-Lane only

• Minimum standard defined for all rural roundabouts, i.e. references to Mini, Compact, Double, Grade Separated, Signalised roundabouts removed.

Geometric Design of Roundabouts

- Minimum/Maximum ICD introduced for various roundabout types:
 - Single Lane (28m 36m)
 - Multi-Lane (45m 55m, 65m max.)
 - Five arm roundabout (55m minimum)

Geometric Design of Roundabouts – Principal Changes:

- Introduction of cut-off point between roundabout and link design 50m from yield line.
- Five arm roundabout now a departure from standards
- Maximum longitudinal gradient of the circulatory carriageway of 2.5%
- Minimum resultant gradient of 1% within 50m of roundabout (may be reduced locally to 0.5% at interface)
- Design of Segregated Left Turn Lanes now included (previously TD 51/03)
- Overrun Areas

Layout of Grade Separated Junctions – Principal Changes:

• Layout Options revised for Grade Separation on Motorway / Type 1 DC

Layout of Grade Separated Junctions – Principal Changes:

• Layout Options **removed** from standard:

Layout of Grade Separated Junctions – Principal Changes:

• Merge layout options amended to remove direct tapers

F-Lane Gain With Ghost Island Merge (Option 1 Preferred)

F - Lane Gain With Ghost Island Merge (Option 2 Alternative)

ARUP

Layout of Grade Separated Junctions – Principal Changes:

• Merge layout options amended to remove direct tapers

H - Alternative Ghost Island Merge With Auxiliary Lane (Departure Required)

Layout of Compact Grade Separated Junctions – Principal Changes:

- Update to Visibility Requirements for low radius compact connector roads
 - Permissible relaxation to low object (0.26m) visibility restricted by safety barrier

Thank You

Any questions?

