

Sustainable Earthworks – Mass Haul Analysis

John O'Connor Arup

TII Standards Training 2022 19th May 2022

Sustainable Earthworks

Background

Ongoing research to identify opportunities at Phase 2 and 3 for greater consideration of earthworks factors which influence sustainability.

Purpose

A well-considered Mass Haul analysis during the early-stage planning and design can help mitigate ground risks, reduce potential waste, and reduce the need for reactive and less sustainable engineering solutions at subsequent project phases.

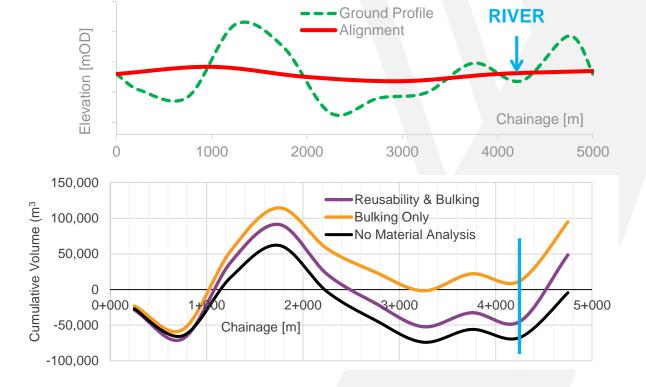
Objective & Deliverable

Identify the main principles that influence Mass Haul and develop a tool which would facilitate Mass-Haul analysis at Phase 2 and Phase 3

What is Mass Haul in this context?

Basic Definition:

Volume of Material x Transport Distance


Accurate mass haul is also influenced by the following:

- material classification
- material acceptability
- material value
- source and destination of material
- material handling and construction practices
- haulage constraints
- haulage / extraction equipment
- programme

What is a Mass Haul Diagram?

A Mass Haul Diagram is a graphical representation of the material moved and facilitate investigation of material allocation and optimised haulage

What are the benefits of Mass Haul as part of Phase 2 & Phase 3?

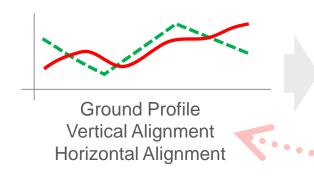
Phase 2 Option Selection Process

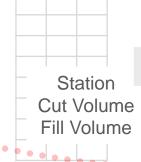
- More *considered comparison* of options in terms of earthworks
- Optimised earthworks design when options at their most flexible
- Facilitate identification of deposition and/or borrow areas much earlier in the process
- Increased likelihood of achieving a more balanced (earthworks) preferred option

Phase 3 Planning Design

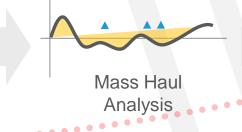
- Reduced risk of unforeseen ground conditions
 which result in expensive, time-consuming and
 disruptive engineering solutions
- Allocation and re-use of material at its *highest* value
- Reduces reactive design to deal with unbalanced preferred option

Phase 4 Statutory Process


- Quantitative and qualitative assessment of factors which influence sustainability (from concept stage)
- Shows stronger link between option selection process, sustainability and land required
- Evidence to support land acquisition, particularly in terms of borrow areas and material deposition areas


Phase 5 & Phase 6

- Greater cost certainty in terms of earthworks quantities and movement
- Optimised earthworks considerations will likely result in *less reliance on natural / scarce resources*
- Localised balances which reduce works and cost associated with long or unsustainable haulage
- Reduction in claim costs and programme overrun due to improved consideration of material movements and allocation e.g. sourcing acceptable material, disposal of unacceptable material

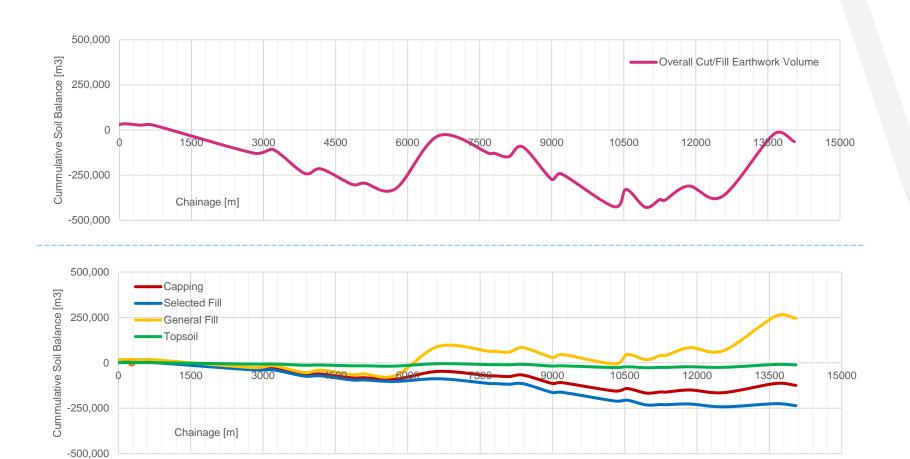

How can Mass Haul be incorporated?

Identification of possible optimisation options

Original Objective

Create a mass haul diagram spreadsheet

Evolved Objective


Create a tool which directs and highlights opportunities for a more sustainable design through optimisation with respects to earthworks

Project Phase	Scope (based on)	Geometry & Volumes	Earthworks Analysis	Project Characteristics	Visualisation	Conclusions & Opportunities
Phase 2	Geological Description (e.g. Overburden, Rock)	 Geometry: Chainage/Stations Alignment 	Volumes:O Cut (Bulked)		Overall Mass	 Earthworks Balance
	TII Material	Levels o Ground Levels	Fill (Uncompacted)	ConstraintsMaterial Deposition Areas	Haul DiagramMass HaulDiagram per	Haulage GradientHaulage Distance (freehaul vs
Phase 3	Classification (e.g. Class 1, Class 2, Class	Volumes:O Cut	 Reusability Analysis 	Borrow Areas	Material Type (as per Phase &	overhaul) • Haulage

Tab	User Input	Analysis & Output
Longsection	Chainage/StationsAlignment LevelsGround LevelsTotal Cut & Fill /Station	Earthworks AreasGradient
Unbulked Cut Volumes	Cut volumes% per earthworks area & material type	Unbulked cut volumes per earthworks area and material
Compacted Fill Volumes	Fill volumes% per earthworks area & fill type	Compacted (in situ) fill volumes per earthworks area and material

Input									Analysis						
Ch	nainage	Gro	und Level	Roa	ad Alignment	E	Earthwork Volume		Average	Elevation	Ave	rage Gradie	nt	Total	
From	То		Levels		Levels	(Cut F	Fill	Ground	Alignment	Groun	nd Align	ment	Volume	
-	-		mOD		mOD		m³	m³	mOD	mOD	%	9	6	m³	
-190	-150	36.933	37.537	36.93			44	2	37.24	37.44	1.5%			42	
-150	-100	37.537	38.244	37.63				11	37.89	38.22	1.4%			212	
-100	-50	38.244	38.837	38.55	1 38.86	5 1	183	9	38.54	38.70	1.2%	6 0.9	9%	174	
	Topsoil	Assumed	Where	Overburden											
	Made Ground	Assumed	assumed,	Overburden											
	Peat	Submitted	based on	Total											
	Overburden	Submitted	percentage	Total											
	Rock	Submitted	of	Total											
	Chainage				Submitted C	ut Volumes		Inpu	ut				Assumed	d Cut Volur	
From	To	Status	Total	Topsoil	Made Ground	Peat	Overburden	Rock	1	Topsoil	Made	Made Ground		Peat	
-	-	-	-	m ³	m³	m³	m³	m³	%	m ³	%	m³	%	m³	
-190	50	CUT				0	25620	1245	5%	1281	10%	2562	0%		
	Topsoil	Assumed		Total		2	0%								
	General Fill	Assumed	Where assumed.	Total			0%								
	Select Fill	Assumed	based on	Total			0%								
	Capping (6F)	Assumed	percentage	Total			0%								
	Subbase	Assumed	of	Total		1	0%								
								Inpu	ut						
	Chainage			Sub	mitted Compa	cted Fill Volu	ımes						med Comp	pacted Fill	
From	То	Status	Total	Topsoil	General Fill		Capping	Subbase		opsoil	Gener	ral Fill		Select Fill	
-	-	-	m³	m³	m³	m³	m³	m³	%	m³	%	m³	%	m³	
100	50	CUT	25						F0/		200/		250/		
-190	50	CUT	26						5%	1	30%	8	25%	6	

		Geometry & Volumes				
Phase 2	Geological Description (e.g. Overburden, Rock)	 Geometry: Chainage/Stations Alignment 	Volumes:O Cut (Bulked)		 Overall Mass 	EarthworksBalance
	TII Material	Levels O Ground Levels	o Fill (Uncompacted)	ConstraintsMaterial Deposition Areas	Haul DiagramMass HaulDiagram per	Haulage GradientHaulage Distance (freehaul vs
Phase 3	Classification (e.g. Class 1, Class 2, Class	Volumes:Out	 Reusability Analysis 	Borrow Areas	Material Type (as per Phase &	overhaul) • Haulage

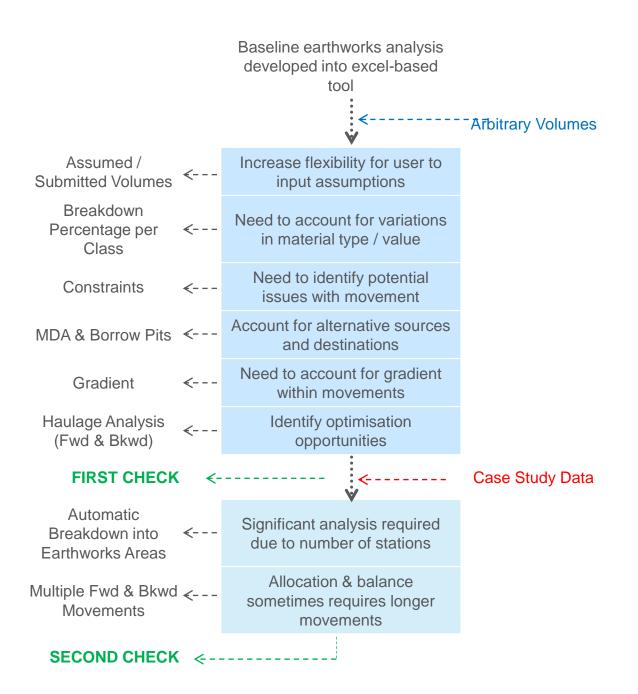
Mass Haul Diagrams -

- Overall
- Detailed per material type or classification
- Automatically updated based on inclusion of material deposition areas and/or borrow areas

					Visualisation	
Phase 2	Geological Description (e.g. Overburden, Rock)	Geometry:Chainage/Sta tionsAlignment	Volumes:Cut (Bulked)		Overall Mass	 Earthworks Balance
	TII Material	Levels o Ground Levels	Fill (Uncompacted)	ConstraintsMaterial Deposition Areas	Haul DiagramMass Haul Diagram per	Haulage GradientHaulage Distance (freehaul vs
Phase 3	Classification (e.g. Class 1, Class 2, Class	Volumes:o Cut	ReusabilityAnalysis	Borrow Areas	Material Type (as per Phase &	overhaul) • Haulage

Haulage Analysis Summary –

- Earthworks balance as total and according to material designation
- Haulage summary per material designation:
 - Haulage volume in terms of freehaul and overhaul
 - Haulage distance in terms of freehaul and overhaul
 - Volume and total distance for uphill movements
- Haulage summary per earthworks area per material type, highlighting following impacts:
 - Gradient (uphill)
 - Constraints
 - Distance (over freehaul)
 - Two iterations of movements, both in forward and backward direction


				Topso			eneral Fill		Selec	cted Fill		Cappi	ng				T	otal		
Haul	age Def	ficit (m³)		26,700			72,563		23	6,044		155,0			118,607				ireann Ire Ireli	and
Haula																				
					To				eneral Fi		S	elected F			Cappin			Subbas		
			O												119,86					
	Haula	age																		
	Volume	e (m³)																		
			Ove	rhaul							2,163			17,11			2,3	44		
					1	7 000 _			10.420			45-405 . To	psoil		_ 17 000					
	Hau							FORWARD	MOVEMENT	r		10	pson			BACKWARD	MOVEMENT			
	Distar	CI	nainage		Т	o the 1st Ne	xt Fill Sectio			To the 2nd Ne	xt Fill Section	on		To the 1st Ne	xt Fill Section			o the 2nd Ne	xt Fill Section	on
	Fr	om To			Gradient	Constraints	Volume	Distance	Gradient	Constraints	Volume	Distance	Gradient	Constraints	Volume	Distance	Gradient	Constraints	Volume	Distanc
	Hau	-190	50	CUT	0.27%	YES	164	320	0.55%	YES	1381	1820								
		50	450	FILL																
	Gra	450	700	CUT	0.63%	NO	23	1175												
	(1	700	2800	FILL	0.700/	110	450	505					0.740/	NO		4250				
		2800 3200	3200 3850	CUT	-0.72%	NO	462	525					-0.74%	NO	462	1250				
	i i	3850	4200	CUT	0.04%	YES	541	500					0.86%	NO	541	500				
	İ	4200	4850	FILL	0.0170	120	311	300					0.0070	110	512	500				
		4850	5100	CUT	0.23%	NO	172	450					0.07%	YES	172	450				
		5100	5750	FILL																
		5750	6650	CUT	0.48%	YES	5263	975					-0.50%	NO	1498	775	-0.29%	YES	3899	1675
		6650	7700	FILL																
		7700	7800	CUT	1.84%	NO	36	200					-0.65%	YES	36	575				
	- 1	7800	8100	FILL																
		8100	8400	CUT	0.18%	NO	1626	450					-1.22%	NO	832	300				
	i-	8400	9000	FILL																
	L	9000	9200	CUT	0.25%	NO	695	650					0.10%	NO	695	400				

						Conclusions & Opportunities
Phase 2	Geological Description (e.g. Overburden, Rock)	Geometry:Chainage/Sta tionsAlignment	Volumes:O Cut (Bulked)		 Overall Mass 	EarthworksBalance
	TII Material	Levels o Ground Levels	o Fill (Uncompacted)	ConstraintsMaterial Deposition Areas	Haul DiagramMass HaulDiagram per	Haulage GradientHaulage Distance (freehaul vs
Phase 3	Classification (e.g. Class 1, Class 2, Class	Volumes:o Cut	Reusability	Borrow Areas	Material Type (as per Phase & Scope)	overhaul) • Haulage

Considerations for Use on Projects

- Tools are intended to support the Phase 2 and Phase 3 design process and identification of opportunities for sustainability in earthworks
- Tools allow for flexibility in terms of the level of geotechnical information available at each Phase
- However, an appropriate level of geotechnical information is required in order to obtain value from Mass Haul Analysis – designers need to consider this at the outset of the project and throughout each Phase
- Essential that Mass Haul Analysis is an integral part of the design process
- Mass Haul needs to be considered holistically along with all relevant aspects it may not be possible to apply all the optimisations identified
- Tools are not intended to replicate the Mass Haul analysis which is undertaken by contractors at Phase 6

2no. Beta Excel-Based Earthwork Analysis Tools with Draft User Manual

Current Tools

Pilot Trial (N17 Knock to Collooney) with in-house trial of Phase 2 tool and independent project team trial of Phase 3 tool

Final Steps

Release of 2no. Excel-Based Earthwork Analysis Tools with User Manual