

NRA Pavement Standards Training

Debate and Interaction

Audience Debate on requirements of the Materials

Panel to ask questions on CE marking, DoP, Type Testing, etc.

Debate and Interaction CE Mark

Debate and Interaction Declaration of Performance

DECLARATION OF PERFORMANCE

No. 001 CPR 2015-01-01

1. Unique identification code of the product-type:

Asphalt Concrete

AC 20 dense bin 70/100

2. Type, batch or serial number or any other element allowing identification of the construction product as required under Article 11(4):

Asphalt Concrete

AC 20 dense bin 70/100 - 0001

3. Intended use or uses of the construction product, in accordance with the applicable harmonised technical specification, as foreseen by the manufacturer:

For binder courses

4. Name, registered trade name or registered trade mark and contact address of the manufacturer as required under Article 11(5):

Any Co Ltd,

X Street,

Dublin, Ireland

Tel. +353 1 234 5678

Fax: +353 1 234 5679

E-mail: anyco@provider.ie

5. Where applicable, name and contact address of the authorised representative whose mandate covers the tasks specified in Article 12(2):

N/A

6. System of assessment and verification of constancy of performance of the construction product as set out in CPR. Annex V:

System 2+

7. In case of the declaration of performance concerning a construction product covered by a harmonised standard:

National Standards Authority of Ireland

Notified body No. 0050

Performed:

the initial inspection of the manufacturing plant and evaluation of factory production control and the continuous surveillance, assessment and evaluation of factory production control

under system:

2+

and issued:

the certificate of conformity of the factory production control

Essential characteristics	Perform	nance	Harmonised technical specification
 Adhesion of binder to aggregate Stiffness Resistance to permanent deformation Resistance to fatigue Skid resistance Resistance to abrasion Reaction to fire Dangerous substances Durability 			EN 13108-1:2006
2, 3, 4, 5, 6, 9	Target grading	passing sieve	
	Sieve	Passing	
	mm	%	
	31,5	100	
	20	99	T21 12(07 2
	10	62	EN 12697-2
	6,3	47	
	2	30	
	0,250	13	
	0,063	5,5	
1, 2, 3, 4, 5, 6, 9	Target binder	content 4,9%	EN 12697-1
1, 2, 4, 5, 9	Minimum and r cont V _{min 4,0} ;	naximum void ent V _{max} 7,0	EN 12697-8; EN 12697- procedure B SSD; E 12697-5 procedure A st water
1,9	Water sensiti	vity ITSR70	EN 12697-12 Method A
1, 2, 3, 4, 9	Maximum Temp Minimum temp	oerature 180 °C erature 140 °C	
2,9	Minimum Stiffn	ess Smin 1800	EN 12697-26 Annex B

the manufacturer identified in point 4.

Signed for and on behalf of the manufacturer by:

(Name and function)

(Place and date of issue)

Declared performance.

(Signature)

Figure NG 0/1 - Example DoP

Debate and Interaction

Assessment and Verification of Constancy of Performance

For Series 900 products, two types of AVCP

- 2+ The manufacturer and the notified body have responsibilities.
 - All bituminous mixtures
 - All bituminous binders
 - Aggregates with a declared PSV of 50+
 - Microsurfacing
 - Surface dressing
 - Geotextiles
- 4 The manufacturer has sole responsibility.
 - Aggregates with a declared PSV of less than 50
 - All other constituents

Deł Typa

Type Testing Report number: TP100 in accordance with EN 13108-20:2006 Mix Type: EN 13108- 1 AC Design mix **Production Plant Name:** Any Co Ltd Plant Product code/ Material name: AC 20 dense bin 70/100 **Mix Validation Method:** Production Validation EN 13108-20 Clause 6.5 3b

٠

1 т

Declared Conformity Categories reference EN 13108-20, Annex B, Table B.1									
Parameter	Annex C	Value	Category	Remarks/ Supporting documents					
Grading	n/a	see Mix Formulation		-					
Binder Content	n/a	see Mix Formulation		-					

Mix Constituents							
Name Source		Туре		Remarks / Supporting documents			
Aggregate 1	Aggregate 1 Belgard		Limestone	LA Coundrage Michael Absorption and Density			
Aggregate 2 Belgard			Limestone	EA, Soundness, Water Absorption and Density,			
Aggregate 3	Belgard		Limestone	Fines Content test certificates attached			
Binder 70/100	Irish Tar an	d Bitumen Sunnliers	EN 12591 PG Bitumen	Penetration and Softening Point test certificates			
bilider 70/100		a bitamen sappners	EN 123511 d'Bitamen	attached			
Permissible range of properties ref. EN 13108-1 AC							
Control methods reference EN13108							

Mix Formulation									
Reference for Targets		EN 13108	EN 13108						
Reference for Tolerance		BS EN 13108-21:2	006 Table A.1 Large	6 Table A.1 Large Aggregate Mix					
Sieve	Designati	on	Target %	Tolerances	Spec. limits				
31.5 mm	1.4 D siev	9	100	-2 +0	98 - 100				
20 mm	D Sieve		99	-9 +5	90 - 100				
10 mm	D/2 or cha	r coarse sieve	62	-9 +9	53 - 71				
6.3 mm	1st Optior	al coarse sieve	47	-9 +9	38 - 56				
2 mm 2	2mm sieve	2	30	-7 +7	23 - 37				
0.250 mm	Characteri	stic fine sieve	13	-5 +5	8 - 18				
0.063 mm	0.063mm sieve	3mm sieve	53mm sieve 5.5	5.5	-3.0 +3.0	2.5 - 8.5			
Binder	er Binder			-0.6 +0.6	4.3 - 5.5				
Binder Category EN 1310	8-1 AC	B _{min} 4.8							
Vinimum void content		V _{min} 4,3	EN 12697-8; El	N 12697-6 proce	dure B SSD; EN 12697-5 procedure A in water				
Maximum void content		V _{max} 6,7	EN 12697-8; El	N 12697-6 proce	dure B SSD; EN 12697-5 procedure A in water				
Water sensitivity		76%	EN 12697-12 N	EN 12697-12 Method A					
Maximum Temperature		176°C							
Minimum Temperature		142°C							
Stiffness 1830 Mpa		EN 12697-26 A	nnex B						
Additional Information									
None									
Declaration of Performa	nce Ref	-							

NRA Pavement Standards Training

Surface Treatments – Requirements for Constituent Materials and Product Composition

Surface Treatments Introduction

Surface Treatments Key Changes

NRA Series 900 requirements contain:

ARUP

Key Changes

Type Approval Installation Trial (TAIT):

- A defined section where the product has been installed using Factory Production Control (FPC)
 - Demonstrates the characteristics of the product complies with the declared characteristics.
 - Subjected to an in service performance assessment after a period of one year.
 - Provides parameters that limit the application of the product (families).
- Requirements per harmonised standards.
 - Microsurfacings
 - Surface Dressing
- Provisional TAIT (prTAIT) for products that do not have a harmonised standard \rightarrow NRA HD 301
 - High Friction Surfacing

Surface Treatments Key Changes

Design Working Life:

- The period for which a product/system is to be used for its intended purpose without repair being necessary.
 - Typically required to be five years
- Defects are measured and site is assessed annually for:
 - Surface defects by visual assessment
 - Macrotexture
- Producer/Contractor responsible to carry out assessment and maintain the performance requirements. Purchaser monitors.

Surface Treatments Microsurfacing Requirements

Microsurfacing is a slurry surfacing with larger aggregate sizes

7.1.1.1 Binder

Binder shall be polymer modified cationic bituminous emulsion.

7.1.1.2 Aggregate

Specified in Appendix 7/10 \rightarrow Per NRA HD 36

Surface Treatments Microsurfacing Requirements

7.1.2.1 Product Types

Two layer system or one layer system with a machine integrated bond coat application.

7.1.3.1 Defects determined by visual inspection

Defects include:

- Bleeding, fattening up and tracking
- Delamination
- Corrugation, bumps and ridges
- Groups of small defects or repetitive defects

7.1.3.3 Surface Shear Strength

The performance of the product's bond to the substrate is to be evaluated and recorded. (surface shear strength test : prCEN/TS 12697-51).

Surface Dressing Requirements (RSD)

7.2.1 General

Recipe Surface Dressing (RSD) designed by the Employer [NRA HD 300; Clause 7.2.2 and Appendix 7/21]

7.2.2.1.1 Binder

Binder shall be in accordance with Table 15 (minimum peak cohesion for PmB)

hEN reference				EN 13808									
Table column reference			1	2	3	4	5	6					
Use	Jse Bond Coat Tack Coat 5		Surface Dressing	Surface Dressing	Surface Dressing	Surface Dressing							
Grade			C65BP 3	C40B 4	C69B3	C69BP 3	C72BP 3	C72BP 3					
Test	Test Method	Unit											
Properties of the Binder													
Sample for test			Bituminous Phase of the emulsion		Residual Binder by Distillation	Bituminous Phase of the emulsion	Bituminous Phase of the emulsion	Bituminous Phase of the emulsion					
Penetration at 25°C	EN 1426	0,1mm			≤ 270 (Class 6)	≤ 270 (Class 6)	≤ 270 (Class 6)	≤ 270 (Class 6)					
Softening point	EN 1427	°C			DV (Class 1)	DV (Class 1)	≥ 39 (Class 7)	≥ 39 (Class 7)					
Cohesion (pendulum test) EN 13		J/cm ²	≥ 1,0		-	≥ 1,0	≥1,2	≥1,4					

Surface Dressing Requirements

7.2.2.2 Composition Recipe Surface Dressing

- Employer design information including the product type shall be provided in Appendix 7/21
- Additional requirements (Clauses 10.2.3.1.3 and 10.2.3.1.4):
 - Accuracy of distribution of both binder and aggregates.
 - Tolerances on rates of spread of chippings

Surface Dressing Requirements (SDP)

7.2.1 General

Surface Dressing Product (End Performance) designed and installed by the Producer. [CE marked and comply with Clause 7.2.3 and Appendix 7/3]

7.2.3 Surface Dressing Product (End Performance)

- Requirements for constituents and composition
- Additional requirements for Works (Clause 10.2.3.2)
- Designer responsible for the intended use as set out in this Clause and contained in Appendix 7/3 for the 'Design Working Life'
- Producer responsible for:
 - CE Marking
 - Performance requirements macrotexture and levels of defects
 - Initial stability capable of withstanding the normal traffic for the site when first opened
 - TAIT documentation & evidence the period for which the performance characteristics have been retained

High Friction Surfacing Requirements

7.3.1.1 Binder

- Cold binders (principally thermosetting products):
 - Epoxy resin; Bitumen extended epoxy resin; Polyurethane; Polyurea; and Methyl methacrylate.
- Hot binders (thermoplastic products):
 - Rosin ester and Hydrocarbon resin.
- The binder shall comply with the requirements of Table 23a.

7.3.1.2 Aggregates

- Manufactured or <u>natural</u> from a single source and free from foreign matter.
- PSV and AAV requirements stated in Table 23b and Table 23c unless otherwise specified in Appendix 7/11.

High Friction Surfacing Requirements

7.3.3.1 Defects determined by visual inspection

- Fatting up
- Delamination
- Fretting
- Grinning

10.2.4.5 Laying

 In-situ bond to the substrate test at time of installation per pull-off test in accordance with ASTM 1583

Debate and Interaction

Audience Debate on requirements of the Surface Treatment Materials

NRA Pavement Standards Training

End of Part 5

NRA Pavement Standards Training

Worked Example: High Friction Surfacing

From Perspective of: Designer/Compiler, Producer, Contractor and Employer's Representative

Pavement Standards Training

Worked Example 2 - High Friction Surfacing

Part 1 - Completing Appendix 7/11 as a Designer/Compiler Worked Example Part 2 - Who's Responsible?

Who is responsible for defining the high friction surfacing requirements and completing Sheet 1 of the Appendix 7/11?

High Friction Surface Requirements →

The Designer/Compiler

Consult the DMRB

Conduct assessments as appropriate

Complete Contract Specific Documents

Appropriate for the INTENDED USE and DURABLE for its expected LIFE

Worked Example High Friction Surfacing - Appendix 7/11

- 1 Location [NRA HD 300 Clause 5.31 (i)]
- 2 Traffic Volume. [NRA HD 300 Clause 5.31 (ii) cv/lane/day]
- 3 Site Category and Investigatory Level. [NRA HD 300 Clause 5.31 (iii)]
- 4 Description of existing surface. [NRA HD 300 Clause 5.31 (iv)]
- 5 Pre-treatment. [NRA HD 300 Clause 5.31 (v) responsibility, type, design, process]
- 6 Length of application if greater than 50m [NRA HD 300 Clause 5.31 (vi)]
- 7 Type of binder if different from Series 900 [Series 900 Clause 7.3.2.1 and NRA HD 300 Clause 5.31 (vii)]
- 8 Minimum declared PSV of chippings if different from Series 900 requirements. [Series 900 Clause 7.3.2.2, and Table 23b, and NRA HD 300 Clause 5.31 (viii)]
- 9 Maximum AAV of chippings if different from Series 900 requirements. [Series 900 Clause 7.3.2.2, Table 2 Table 23b, and NRA HD 300 Clause 5.31 (viii)]
- 10 Design Working Life. [Series 900 Clause 10.2.4.7, NRA HD 300 Clause 5.31 (ix) normally 5 years]
- 11 Macrotexture [Series 900 Clause 7.3.3.2 and HD 300 Clause 5.31(x)]
- 12 Level of fatting up (% area affected P₁) acceptable [Series 900 Clause 7.3.3.1 and HD 300 Clause 5.31 (xi)]
- 13 Level of delamination (% area affected P2) acceptable [Series 900 Clause 7.3.3.1 and HD 300 Clause 5.31 (
- 14 Level of fretting (% area affected P₃) acceptable [Series 900 Clause 7.3.3.1 and HD 300 Clause 5.31 (xi)]
- 15 Level of grinning (% area affected P4) acceptable [Series 900 Clause 7.3.3.1 and HD 300 Clause 5.31 (xi)]

16 Pull Off test frequency - after curing and at 1 year where applicable [NRA HD 300 Clause 5.31(xii)]

ARUP

Worked Example

- An assessment of the existing pavement includes:
 - Traffic volume calculations
 - Determining the site category
 - Visual assessment
 - Macrotexture measurements

Design Traffic \rightarrow NRA HD 24

- Site category \rightarrow NRA HD 28
 - Investigatory level \rightarrow NRA HD 28

Site c	Site category and definition		Investigatory Level at 50km/h									
	-	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65			
А	Motorway											
В	Dual carriageway non-event											
С	Single carriageway non-event											
G1	Gradient 5-10% longer than 50m											
G2	Gradient >10% longer than 50m											
Κ	Approaches to traffic signals. pedestrian crossings											
Q	Approaches to and across major and minor junctions,											
R	Roundabout											
S 1	Bend radius <250m – dual carriageway											
S2	Bend radius <250m – single carriageway											

Traffic > 250 commercial vehicles / lane/ per day Traffic < 250 commercial vehicles/lane/ per day

Visual Assessment \rightarrow NRA HD 300

When inspecting the road surface the extent of any of the following structural defects should be assessed:

- i) Cracking (may include alligator cracking, edge cracking and breakup).
- ii) Rutting/wheel tracking.
- iii) Heterogeneity/variability (may include pavement deformation, surface distortion).

When inspecting the road surface extent of any of the following surface defects should be assessed:

- i) Bleeding.
- ii) Fatting up.
- iii) Ravelling/fretting.
- iv) Patching (may include potholes).

The Purchaser will need to assess the level of any defects and decide if, and to what extent, pretreatment is required. The responsibility of which party designs the pre-treatment is explained in Clause 3.36 (v) below.

The visual assessment should also note the condition of the existing road drainage. Refer to NRA HD 30 and NRA HD 31 for assistance on this issue.

ARUP

- Macrotexture \rightarrow IS EN 13036-1 (Sand Patch Test)
 - Existing surface shall be between 0,5 mm to 2,0 mm unless verified by prTAIT

Worked Example High Friction Surfacing - Appendix 7/11

- 1 Location [NRA HD 300 Clause 5.31 (i)] R157 Dunboyne Bypass South, Ch 0+000 to Ch 0+070
- 2 Traffic Volume. [NRA HD 300 Clause 5.31 (ii) cv/lane/day] 2000 cvd
- 3 Site Category and Investigatory Level. [NRA HD 300 Clause 5.31 (iii)] G2, 0.50
- 4 Description of existing surface. [NRA HD 300 Clause 5.31 (iv)] General grit, macrotexture = 0.8 mm
- 5 Pre-treatment. [NRA HD 300 Clause 5.31 (v) responsibility, type, design, process]
- 6 Length of application if greater than 50m [NRA HD 300 Clause 5.31 (vi)]
- 7 Type of binder if different from Series 900 [Series 900 Clause 7.3.2.1 and NRA HD 300 Clause 5.31 (vii)]
- 8 Minimum declared PSV of chippings if different from Series 900 requirements. [Series 900 Clause 7.3.2.2, Table 23a and Table 23b, and NRA HD 300 Clause 5.31 (viii)]
- 9 Maximum AAV of chippings if different from Series 900 requirements. [Series 900 Clause 7.3.2.2, Table 23a and Table 23b, and NRA HD 300 Clause 5.31 (viii)]
- 10 Design Working Life. [Series 900 Clause 10.2.4.7, NRA HD 300 Clause 5.31 (ix) normally 5 years]
- 11 Macrotexture [Series 900 Clause 7.3.3.2 and HD 300 Clause 5.31(x)]
- 12 Level of fatting up (% area affected P1) acceptable [Series 900 Clause 7.3.3.1 and HD 300 Clause 5.31 (xi)]
- 13 Level of delamination (% area affected P2) acceptable [Series 900 Clause 7.3.3.1 and HD 300 Clause 5.31 (xi)]
- 14 Level of fretting (% area affected P3) acceptable [Series 900 Clause 7.3.3.1 and HD 300 Clause 5.31 (xi)]
- 15 Level of grinning (% area affected P₄) acceptable [Series 900 Clause 7.3.3.1 and HD 300 Clause 5.31 (xi)]

NRA 16 Pull Off test frequency - after curing and at 1 year where applicable [NRA HD 300 Clause 5.31(xii)] An tUdarás um Bólithre Náisiúnta National Roads Authority

Worked Example High Friction Surfacing - Next Step

What is the next step in the decision process?

- A. Evaluate alternatives and determine the most effective treatment type.
- B. Detail design of pre-treatment works based on proprietary HFS product.

Worked Example High Friction Surfacing - Suitability

An tÚdarás um Bóithre Náisiúnta

ARUP

Worked Example High Friction Surfacing - Suitability

			Minimum PSV required for given IL, traffic level and type of site								
	Site category and definition		Traffic (Commercial Vehicles per Lane per Day) at opening								
(see NRA HD 28)			<250	251-500	501-750	751-1000	1001- 2000	2001- 3000	Over 3000		
		0.40	55								
G1	Gradient 5-10% longer than 50m	0.45		60	60	65	65	68+	68+		
		0.50		65	68+	68+	H / 70+	H / 70+	H / 70+		
		0.40	55								
G2	Gradient >10% longer than 50m	0.45		60	60	65	65	68+	68+		
		0.50		65	68+	68+	H / 70+	H / 70+	H / 70+		
v	Approaches to traffic signals, pedestrian	0.50	65								
ĸ	crossings	0.55		68+	H / 70+	H / 70+	H / 70+	H / 70+	H / 70+		
0	Approaches to and across major and minor	0.40	60								
	junctions	0.45		60	65	65	68+	68+	68+		
D	Roundabout	0.45	60								
K		0.50		65	65	68+	68+	68+	68+		
S 1	Pend radius <250m dual carriageway	0.45	60								
51	Benu radius ~250m – duar carriageway	0.50		65	68+	H / 70+	H / 70+	H / 70+	H / 70+		
\$2	Bend radius <250m - single carriageway	0.45	60								
52	benu rautus ~250m – single carriageway			65	68+	H / 70+	H / 70+	H / 70+	H / 70+		

ARUP

Worked Example High Friction Surfacing - Suitability

- Treatment options to assess in addition to high friction surfacing may include the following options:
 - Measures to reduce the risk and/or stresses
 - Minor roadway realignment
 - Improved signage, road markings or lighting
 - Pavement reconstruction and pavement overlay with high PSV aggregate.
 - Microsurfacing or surface dressing with a high PSV aggregate bonded with a binder capable of withstanding the braking forces
- Determine the most effective option

Worked Example High Friction Surfacing - Suitability

Worked Example High Friction Surfacing – Pre-Treatment

Worked Example High Friction Surfacing - Pre-Treatment

- Pre-treatment of the existing may include:
 - Surface and structural defect repairs
 - High pressure washing
 - Fine milling
 - Shot blasting
 - Gritting

Responsible party for Works? Purchaser or Contractor?

Worked Example High Friction Surfacing - Appendix 7/11

- 1 Location [NRA HD 300 Clause 5.31 (i)] R157 Dunboyne Bypass South, Ch 0+000 to Ch 0+070
- 2 Traffic Volume. [NRA HD 300 Clause 5.31 (ii) cv/lane/day] 2000 cvd
- 3 Site Category and Investigatory Level. [NRA HD 300 Clause 5.31 (iii)] G2, 0.50
- 4 Description of existing surface. [NRA HD 300 Clause 5.31 (iv)] General grit, macrotexture = 0.8 mm

by Contractor

- 5 Pre-treatment. [NRA HD 300 Clause 5.31 (v) responsibility, type, design, process] Pressure wash for general cleanliness
- 6 Length of application if greater than 50m [NRA HD 300 Clause 5.31 (vi)]
- 7 Type of binder if different from Series 900 [Series 900 Clause 7.3.2.1 and NRA HD 300 Clause 5.31 (vii)]
- 8 Minimum declared PSV of chippings if different from Series 900 requirements. [Series 900 Clause 7.3.2.2, Table 23a and Table 23b, and NRA HD 300 Clause 5.31 (viii)]
- 9 Maximum AAV of chippings if different from Series 900 requirements. [Series 900 Clause 7.3.2.2, Table 23a and Table 23b, and NRA HD 300 Clause 5.31 (viii)]
- 10 Design Working Life. [Series 900 Clause 10.2.4.7, NRA HD 300 Clause 5.31 (ix) normally 5 years]
- 11 Macrotexture [Series 900 Clause 7.3.3.2 and HD 300 Clause 5.31(x)]
- 12 Level of fatting up (% area affected P1) acceptable [Series 900 Clause 7.3.3.1 and HD 300 Clause 5.31 (xi)]
- 13 Level of delamination (% area affected P2) acceptable [Series 900 Clause 7.3.3.1 and HD 300 Clause 5.31 (xi)]
- 14 Level of fretting (% area affected P3) acceptable [Series 900 Clause 7.3.3.1 and HD 300 Clause 5.31 (xi)]
- 15 Level of grinning (% area affected P4) acceptable [Series 900 Clause 7.3.3.1 and HD 300 Clause 5.31 (xi)]

NRA 16 Pull Off test frequency - after curing and at 1 year where applicable [NRA HD 300 Clause 5.31(xii)] An tUdarás um Bólithre Náisiúnta National Roads Authority

Worked Example High Friction Surfacing – Contract Requirements

Worked Example High Friction Surfacing - Contract Requirements

What are some additional contract requirements to specify for high friction surfacing?

- A. Length of high friction surfacing.
- B. Binder and aggregate requirements.
- c. Performance requirements.
- D. End product testing requirements.

Worked Example

High Friction Surfacing - Contract Requirements

- Length of application \rightarrow NRA HD 36
 - Minimum length = 50m
- Binder requirements \rightarrow NRA Series 900, Clause 11, Table 23a

Adhesive strength ¹	\geq 1,7 MPa	IS EN 1542
Elongation at break point for epoxy, methyl methacrylate, and polyurethane cold binders ¹	≥ 30%	IS EN ISO 527-1
Tensile strength of epoxy, methyl methacrylate, and polyurethane cold binders ²	≥ 10,5 MPa	IS EN ISO 527-1
Tensile strength of hot binders	As declared	BS 6319-7
Softening point of hot binders	≥ 90 °C	BS 2000-58
Flow resistance of hot binders @ 60 °C	$\leq 1 \text{ mm}$	BS 2499-3

• Aggregate requirements \rightarrow NRA Series 900, Clause 11, Table 23b

Resistance to Polishing - PSV ¹	PSV70+	EN 1097-8
Resistance to Surface Abrasion - AAV ²	Declared	EN 1097-8 Annex A

Worked Example

High Friction Surfacing – Contract Requirements

- 'Design Working Life'
 - 5 years normally
- Minimum performance requirements
 - Macrotexture

Technical requirement	Reference	Unit	Minimum level		
Macrotexture minimum for broadcast systems	IS EN 13036-1 (or IS EN ISO	mm	≥ 0.7 for individual measurement and ≥ 1.0 mean		
Macrotexture minimum for screeded systems	13473-1)		≥ 0.5 for individual measurement and ≥ 0.8 mean		

Visual defects

Defect	Reference	Unit	Defects in the inside wheel track ¹	Defects in the outside wheel track ¹	
P_1 – fatting up	IS EN 12272-2	%	≤0.5	≤2	
P_2 – delamination	ination IS EN 12274-8 ²		≤0.5	≤2	
P ₃ – fretting IS EN 12272-2		%	≤3	≤6	
<i>P</i> ₄ – grinning IS EN 12274-8 ²		%	≤3	≤6	

Worked Example High Friction Surfacing - Contract Requirements

Pull-off test – Indicator of Works

Worked Example High Friction Surfacing - Appendix 7/11

- 1 Location [NRA HD 300 Clause 5.31 (i)] R157 Dunboyne Bypass South, Ch 0+000 to Ch 0+070
- 2 Traffic Volume. [NRA HD 300 Clause 5.31 (ii) cv/lane/day] 2000 cvd
- 3 Site Category and Investigatory Level. [NRA HD 300 Clause 5.31 (iii)] G2, 0.50
- 4 Description of existing surface. [NRA HD 300 Clause 5.31 (iv)] General grit, macrotexture = 0.8 mm
- 5 Pre-treatment. [NRA HD 300 Clause 5.31 (v) responsibility, type, design, process] Pressure wash for general cleanliness
- 6 Length of application if greater than 50m [NRA HD 300 Clause 5.31 (vi)] 70m
- 7 Type of binder if different from Series 900 [Series 900 Clause 7.3.2.1 and NRA HD 300 Clause 5.31 (vii)] N/A
- 8 Minimum declared PSV of chippings if different from Series 900 requirements. [Series 900 Clause 7.3.2.2, Table 23a N/A and Table 23b, and NRA HD 300 Clause 5.31 (viii)]
- 9 Maximum AAV of chippings if different from Series 900 requirements. [Series 900 Clause 7.3.2.2, Table 23a and Table 23b, and NRA HD 300 Clause 5.31 (viii)]
- 10 Design Working Life. [Series 900 Clause 10.2.4.7, NRA HD 300 Clause 5.31 (ix) normally 5 years] 5 years
- 11 Macrotexture [Series 900 Clause 7.3.3.2 and HD 300 Clause 5.31(x)] Min. 0.7 mm
- 12 Level of fatting up (% area affected P₁) acceptable [Series 900 Clause 7.3.3.1 and HD 300 Clause 5.31 (xi)] ≤ 0.5 inside, ≤ 2.0 outside
- 13 Level of delamination (% area affected P2) acceptable [Series 900 Clause 7.3.3.1 and HD 300 Clause 5.31 (xi)] ≤ 0.5 inside, ≤ 2.0 outside
- 14 Level of fretting (% area affected P₃) acceptable [Series 900 Clause 7.3.3.1 and HD 300 Clause 5.31 (xi)] \leq 3.0 inside, \leq 6.0 outside
- 15 Level of grinning (% area affected P4) acceptable [Series 900 Clause 7.3.3.1 and HD 300 Clause 5.31 (xi)] ≤ 3.0 inside, ≤ 6.0 outside

Pavement Standards Training

Worked Example 2 - High Friction Surfacing

Part 2 - Producing High Friction Surfacing

Worked Example Producing the Mixture - Who's Responsible?

High friction surfacing design and production \rightarrow The Producer

Worked Example Producing the System - Introduction

In terms of the Producer, focus on:

- Clause 11 look-up tables containing the requirements for the constituents
- Requirements for prTAIT
- Requirements to complete Specification Appendices

Worked Example Producing the System - Product Requirements

Table 23a High Friction Surfacing - Requirements for binders

					-		
	Table 23c High Fri	ction Surfa	cing – Requireme	nts for natu	ral aggregates		
Physical P							
Bauxite					Test Met	thod	
Resistance	Physical Property Nat	ural					
Resistance	Aggregate						
AAV ²	Resistance to Polishing	- PSV ¹	PSV70+ Declared E		EN 109	EN 1097-8	
Particle De	Resistance to Surface A	brasion -			EN 1097-8 Annex A		
Kesistance	AAV ²						
- water At	Particle Density		Declared	d	EN 109	7-6	
Particle Ar	Resistance to Freezing	& Thawing	WA ₂₄ 1,0		EN 1097-6		
Sleve Size	-Water Absorption						
2 25	Particle Angularity		Blocked shape (not flakes)		Visual Assessment		
1.18	Sieve Size				EN933-1		
0.60	4		100				
Mineralog	3,35		95 to 100				
Aggregate	1,18		0 to 5				
Diasporie (0,60		0 to 0,5				
Chemical	Notes						
Manufact	* The test is carried out	on aggregate j	passing a 10mm sieve a	and retained on a	a 7,2mm grid sieve		
Al ₂ O ₃	⁴ The test is carried out	on aggregate j	passing a 14mm sieve a	and retained on a	a 10,2mm grid sieve		
Fe2O3			≤ 4,5% ≤ 12,5%				
SiO2							
K2O+Na2O		<u>≤</u> 0,5%					
TiO ₂			≤ 4,5%				
Notes							
* The test is	carried out on aggregate	passing a 10mi	m sieve and retained on a	a 7,2mm grid sie	ve	AKUP	
	Physical P Bauxite Resistance AAV ² Particle De Resistance - Water Ab Particle Ar Sieve Size 4 3,35 1,18 0,60 Mineralog Aggregate Diasporic (Chemical) Manufact(Al ₂ O ₃ Fe ₂ O ₃ SiO ₂ K ₂ O+Na ₂ O TiO ₂ Notes ¹ The test is	Table 23c High Frie Table 23c High Frie Physical Property Nat Resistance Physical Property Nat Resistance Aggregate AAV ² Resistance to Polishing Particle De Resistance to Surface A AAV ² Resistance to Surface A AV ² Particle Density Particle Ar Resistance to Freezing Sieve Size -Water Absorption 4 Particle Angularity 3,35 Sieve Size 1,18 0,60 0,60 3,35 Mineralog 1,18 0,60 Notes 1 The test is carried out Fe2O3 SiO2 K2O+Na2O TiO2 Notes 1 1 The test is carried out on aggregate	Table 23c High Friction Surfa Table 23c High Friction Surfa Physical P Bauxite Resistance Physical Property Natural Aggregate Aggregate AAV ² Resistance to Polishing - PSV ¹ Particle De Resistance to Surface Abrasion - AAV ² Resistance to Surface Abrasion - AAV ² Particle Density Particle Ar Resistance to Freezing & Thawing Sieve Size .Water Absorption 4 Particle Angularity 3,35 Sieve Size 1,18 4 0,60 3,35 Mineralog 1,18 4 0,60 Notes 1 1 The test is carried out on aggregate Fe2O3 SiO2 SiO2 SiO2 Notes 1 1 The test is carried out on aggregate passing a 10m 2 The test is carried out on aggregate passing a 10m	Table 23c High Friction Surfacing – Requireme Physical P Bauxite Physical Property Natural Aggregate Resistance Physical Property Natural Aggregate Structural Aggregate AAV2 Resistance to Polishing - PSV ¹ PSV70* Particle De Resistance Resistance to Surface Abrasion - AAV ² Declaret • Water Ab Particle Density Declaret Particle Ar Resistance to Freezing & Thawing WA241,0 • Water Absorption Blocked shape (r Sieve Size 1,18 Q Oto 5 0,60 3,35 95 to 10 Mineralog Notes 1 AlgO3 2 The test is carried out on aggregate passing a 10mm sieve at 2 ParO3 < 4,5%	Table 23c High Friction Surfacing – Requirements for nature Physical Property Natural Resistance Physical Property Natural AAV2 Period Particle De Resistance to Polishing - PSV ¹ PSV70+ Resistance AAV ² Declared Particle De Resistance to Surface Abrasion - Declared AAV ² Particle Density Declared Particle Art Resistance to Freezing & Thawing WA241,0 Sieve Size 1,18 000 0,60 95 to 100 1,18 0 to 5 0,60 0 to 0,5 Notes 1 ¹ The test is carried out on aggregate passing a 10mm sieve and retained on a 7,2mm grid side ¹ The test is carried out on aggregate passing a 10mm sieve and retained on a 7,2mm grid side	Table 23c High Friction Surfacing – Requirements for natural aggregates Physical P Test Met Test Met Resistance AV2 Particle De Resistance to Polishing - PSV ¹ PSV70+ EN 109 Particle De Resistance to Surface Abrasion - Declared EN 1097-8 A Aggregate AAV2 Particle A Particle Density Declared EN 1097-8 A Agregate Notes Particle Angularity Declared EN 109 Water Absorption 4 Particle Angularity Blocked shape (not flakes) Visual Asse 3.35 95 to 100 Mineralog Aggregate 0,60 0 to 0,5 Notes The test is carried out on aggregate passing a 10mm sieve and retained on a 7,2mm grid sieve <t< th=""></t<>	

Table 23b High Friction Surfacing – Requirements for manufactured aggregates

the test is carried out on aggregate passing a 14mm sieve and retained on a 10.2mm grid sieve

Worked Example Producing the Mixture – HFS prTAIT

High friction surfacing requires a prTAIT:

- Provisional TAIT (prTAIT) for products that do not have a harmonised standard
- Requirements per NRA HD 301
- A defined section where the product has been installed using Factory Production Control (FPC)
- Demonstrates the characteristics of the product complies with the declared characteristics.
- Subjected to an in service performance assessment after a period of one year. Assessed annually thereafter to determine 'design working life'.

ARUP

 Provides parameters that limit the application of the product (prTAIT families).

Worked Example

Producing the Mixture - HFS prTAIT Requirements

- Requirements for Works
 - Bond to substrate
 - Target rate of spread of binder for cold applied broadcast systems
 - Target rate of spread of aggregate for cold applied broadcast systems
 - Tolerance on rate of spread of aggregate for cold applied broadcast systems
 - Target application rate for screeded systems
 - Tolerance on application rate for screeded systems
 - Tolerance on target binder content

Worked Example Producing the Mixture - HFS prTAIT Requirements

Works Requirements for Cold Applied Broadcast Systems

Parameter	Requirement
Target rate of spread of binder	≥1.35 kg/m²
Tolerance on rate of spread of binder	±10%
Target rate of spread of aggregate	As declared (kg/m ²)
Tolerance on rate of spread of aggregate	±15%

Worked Example Producing the Mixture - prTAIT Families

2 Traffic Volume. [NRA HD 300 Clause 5.31 (ii) - cv/lane/day] 2000 cvd

3 Site Category and Investigatory Level. [NRA HD 300 Clause 5.31 (iii)] G2, 0.50

Column	1	2	3	4	5	6	7	
Line	Parameters that limit the	Site Categories ¹						
1	application of a prTAIT	G1, S1		G2, S2		K		
2	Traffic Category (cv/lane/day)	≤1000	> 1000	≤750	> 750	\leq 500	> 500	
3	Type of High Friction Surfacing	Cold Broadcast / Cold Screeded / Hot Screeded						
4	Types of Aggregate	Natural / Manufactured						
5	prTAIT family	1	2 ²	3	4 ²	5	6 ²	
Notes								
¹ Site categories as defined in NRA HD 28.								
² Previously successful prTAITs may be applied to other site in accordance with Clause 2.25.								

Table 2C.1 - Limiting number of prTAITs and defining families for High Friction Surfacing

Worked Example High Friction Surfacing - Appendix 7/11

- The Producer completes Sheet 2 of Appendix 7/11 with:
 - A copy of IS EN ISO 9001 certificate
 - Declaration of the 'Design Working Life'
 - Proposed binder and bond coat
 - Source of aggregate and associated DoP and CE marking
 - Works proposal for each site
 - Statement of relevant experience and expertise
 - Product/system storage at and transport to site
 - Weather requirements for installation of HFS
 - Time period between completion of works and opening to traffic

Pavement Standards Training

Worked Example 2 – High Friction Surfacing

Part 3 – Installing and Checking the Works

Worked Example The Works - Who's Responsible?

Installing and in situ testing \rightarrow The Contractor

Procure a suitable HFS system

Demonstrate the system is compliant

Organise and undertake the Works & arrange for testing to be completed

Appropriate for INTENDED USE & DURABLE for EXPECTED LIFE

Worked Example The Works - Who's Responsible?

Monitoring the Works for the Employer \rightarrow The Employer's Rep.

Oversee Translation of the Designers requirements into the end product

> Seek documentation demonstrating material compliance

Conduct checks to ensure surface treatment performance consistent with Series 900

Appropriate for INTENDED USE & DURABLE for EXPECTED LIFE

Worked Example The Works - Introduction

In terms of the Contractor, focus on:

- The detail within Clause 10 of Series 900; what's in the Clause and what's new
- Documentation of prTAIT requirements
- Requirements for in situ testing

Worked Example The Works - Specification Requirements

Requirements for the Works (High Friction Surfacing)

- Works Proposals
- Existing Surface
- Transport
- Weather Conditions
- Laying
- Trafficking and aftercare
- Performance

- Contractor to submit to ER
 - Repair Works and Cold Milling
 - As demonstrated by prTAIT
- Surface temp, rain, etc.
 - Bond to substrate
 - Use of surface by 'live' traffic
- Satisfaction of 'design working life' against defects

Worked Example

The Works - prTAIT Certificate and Appendix 7/11

- Contractor to document prTAIT by completing Appendix 7/11:
 - Product company name and address
 - Location of prTAIT and reference number
 - prTAIT family
 - Proprietary name
 - Description of product/system
 - Storage and transportation requirements
 - Rate and tolerance of spread of both binder and aggregate
 - Macrotexture depth and visual assessment results after 1 year
 - Period for which the performance characteristics have been retained
 - Constraints on application for the product/system including:
 - Time of year
 - Temperature
 - Weather

Worked Example The Works - In-Situ Testing

The Contractor shall demonstrate the system's bond to the substrate:

Worked Example Conclusion

This section of the Workshop has:

- Outlined roles and responsibilities of the various parties
- Summarised the key changes and reasons for changing
- Carried out a worked example in completing Appendix 7/11
- Outlined the issues for a Producer to be aware of
- Outlined the requirements for the Contractor and the role of the ER during the Works

Debate and Interaction

Audience Debate on requirements of the Surface Treatment contract documents process

NRA Pavement Standards Training

End of Part 6

NRA Pavement Standards Training

Summary of Other Parts of Series 900 and Future Developments

Clause 8

- Clause 8.1: Low Energy Bound Mixtures (LEBM)
- Clause 8.2: Retexturing
- Clause 8.3: Geotextiles and Geotextile-related products
- Clause 8.4: Permanent Repair Material Systems (PRMS)
- Clause 8.5: Localised Surface Repair Systems (LSRS)
- Clause 8.6: Emergency Repair Material Systems (ERMS)

Clause 10

 Clause 10.3 – 'Works' for Miscellaneous Products and Processes

Low Energy Bound Mixtures (LEBM)

- Update to advice in IAN $01/11 \rightarrow NRA$ Series 900, NRA HD 300
- What are LEBM?
 - Produced ex situ or in situ
 - Subbase, base and binder course material

Retexturing

Aim to restore adequate levels of micro and/or macrotexture and thereby skid resistance

Selection of treatment shall be in

accordance with Table 25b

- Different techniques:
 - **Bush Hammering**
 - Shot Blasting
 - Grooving/Grinding
 - Longitudinal Scabbling
 - Water Jetting

Geotextiles and Geotextile-related products

 Part of pavement structure but NOT between binder and surface course

- Intended Uses:
 - Reinforcement at low strain
 - Barrier, Sealing and prevention of water penetration
 - Stress Absorption
- Types:
 - Steel meshes
 - Geogrid products
 - Geocomposites

Future Developments What's to Come – NRA DMRB

NRA DMRB

- NRA HD 37 and NRA HD 301 to be published
- Updated NRA HD 25-26

 \rightarrow based on an analytical approach utilising new Series 900 materials and site trials

- Updated to NRA HD 300
 - \rightarrow an analytical approach to surface dressing design based on site trials \rightarrow updates based on site trials (HFS, LEBM)
- Updated NRA HD 39
 - \rightarrow footway design

Future Developments What's to Come – NRA MCDRW

NRA MCDRW

 Updates to NRA Series 900 based on 'to be recorded' testing information

NRA IAN

- NRA IAN on mastic asphalt
- NRA IAN on crack repair and joint repair for existing joints

NRA (Other)

'Best Practice Guide' for Pavement Works on Site

Development of NRA MCDRW Series 900: Reforms, Challenges and Safety REVIEW

New Pavement Specifications and Standards

Key Points and what we set out to achieve...

- 1. Higher quality materials to improve durability
- 2. Consistency at all stages manufacturing through to inclusion in the works
- 3. Improve safety concerns
- 4. Address performance issues
- 5. It is Part 1 of a 2 stage process

Close of Workshop

Summary

Comments to

edward.winterlich@tii.ie

NRA Pavement Standards Training